Spaces:
Sleeping
Sleeping
File size: 1,760 Bytes
e02646c 651479a 6309451 651479a 9b5ecd1 651479a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
import litellm
model_name = "OpenHermes 2.5"
def inference(message, history):
try:
flattened_history = [item for sublist in history for item in sublist]
full_message = " ".join(flattened_history + [message])
messages_litellm = [{"role": "user", "content": full_message}] # litellm message format
partial_message = ""
for chunk in litellm.completion(model="together_ai/teknium/OpenHermes-2p5-Mistral-7B",
messages=messages_litellm,
max_new_tokens=4096,
temperature=.7,
top_k=100,
top_p=.9,
repetition_penalty=1.18,
stream=True):
partial_message += chunk['choices'][0]['delta']['content'] # extract text from streamed litellm chunks
yield partial_message
except Exception as e:
print("Exception encountered:", str(e))
yield f"An Error occured please 'Clear' the error and try your question again"
gr.ChatInterface(
inference,
chatbot=gr.Chatbot(height=400),
textbox=gr.Textbox(placeholder="Enter text here...", container=False, scale=5),
description=f"""
CURRENT PROMPT TEMPLATE: {model_name}.
An incorrect prompt template will cause performance to suffer.
Check the API specifications to ensure this format matches the target LLM.""",
title="Simple Chatbot Test Application",
examples=["Define 'deep learning' in once sentence."],
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
theme=None,
).queue().launch() |