Spaces:
Build error
Build error
import gradio as gr | |
import torch | |
import transformers | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
from PIL import Image | |
import warnings | |
# disable some warnings | |
transformers.logging.set_verbosity_error() | |
transformers.logging.disable_progress_bar() | |
warnings.filterwarnings('ignore') | |
# Set device to GPU if available, else CPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
model_name = 'cognitivecomputations/dolphin-vision-72b' | |
# Configure 8-bit quantization | |
quantization_config = BitsAndBytesConfig( | |
load_in_8bit=True, | |
llm_int8_threshold=6.0, | |
llm_int8_has_fp16_weight=False | |
) | |
# create model and load it to the specified device with 8-bit quantization | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=quantization_config, | |
device_map="auto", # This will automatically use the GPU if available | |
trust_remote_code=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_name, | |
trust_remote_code=True | |
) | |
def inference(prompt, image): | |
messages = [ | |
{"role": "user", "content": f'<image>\n{prompt}'} | |
] | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] | |
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to(device) | |
image_tensor = model.process_images([image], model.config).to(device) | |
# Add debug prints | |
print(f"Device of model: {next(model.parameters()).device}") | |
print(f"Device of input_ids: {input_ids.device}") | |
print(f"Device of image_tensor: {image_tensor.device}") | |
# generate | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=image_tensor, | |
max_new_tokens=1024, | |
use_cache=True | |
)[0] | |
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail") | |
image_input = gr.Image(label="Image", type="pil") | |
submit_button = gr.Button("Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output") | |
submit_button.click(fn=inference, inputs=[prompt_input, image_input], outputs=output_text) | |
demo.launch(share=True) |