Spaces:
Build error
Build error
import gradio as gr | |
import torch | |
import transformers | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from PIL import Image | |
import warnings | |
# disable some warnings | |
transformers.logging.set_verbosity_error() | |
transformers.logging.disable_progress_bar() | |
warnings.filterwarnings('ignore') | |
model_name = 'cognitivecomputations/dolphin-vision-72b' | |
# Set up GPU memory optimization | |
torch.cuda.empty_cache() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
# Load model with memory optimizations | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
device_map="auto", | |
trust_remote_code=True, | |
offload_folder="offload", # Offload to disk if necessary | |
offload_state_dict=True, # Offload state dict to CPU | |
max_memory={0: "40GB"} # Limit GPU memory usage | |
) | |
def inference(prompt, image, temperature, beam_size): | |
messages = [ | |
{"role": "user", "content": f'<image>\n{prompt}'} | |
] | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] | |
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to(device) | |
image_tensor = model.process_images([image], model.config).to(device) | |
# Clear GPU memory | |
torch.cuda.empty_cache() | |
# Generate with memory optimization | |
with torch.cuda.amp.autocast(): | |
output_ids = model.generate( | |
input_ids, | |
images=image_tensor, | |
max_new_tokens=1024, | |
temperature=temperature, | |
num_beams=beam_size, | |
use_cache=True, | |
do_sample=True, | |
repetition_penalty=1.1, | |
length_penalty=1.0, | |
no_repeat_ngram_size=3 | |
)[0] | |
# Clear GPU memory again | |
torch.cuda.empty_cache() | |
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail") | |
image_input = gr.Image(label="Image", type="pil") | |
temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") | |
beam_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Beam Size") | |
submit_button = gr.Button("Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output") | |
submit_button.click( | |
fn=inference, | |
inputs=[prompt_input, image_input, temperature_input, beam_size_input], | |
outputs=output_text | |
) | |
# Launch the app | |
demo.launch() |