Ketengan-Diffusion-Lab's picture
Update app.py
ef394e0 verified
import gradio as gr
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
model_name = 'cognitivecomputations/dolphin-vision-72b'
# Set up GPU memory optimization
torch.cuda.empty_cache()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Load model with memory optimizations
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
trust_remote_code=True,
offload_folder="offload", # Offload to disk if necessary
offload_state_dict=True, # Offload state dict to CPU
max_memory={0: "40GB"} # Limit GPU memory usage
)
def inference(prompt, image, temperature, beam_size):
messages = [
{"role": "user", "content": f'<image>\n{prompt}'}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to(device)
image_tensor = model.process_images([image], model.config).to(device)
# Clear GPU memory
torch.cuda.empty_cache()
# Generate with memory optimization
with torch.cuda.amp.autocast():
output_ids = model.generate(
input_ids,
images=image_tensor,
max_new_tokens=1024,
temperature=temperature,
num_beams=beam_size,
use_cache=True,
do_sample=True,
repetition_penalty=1.1,
length_penalty=1.0,
no_repeat_ngram_size=3
)[0]
# Clear GPU memory again
torch.cuda.empty_cache()
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
# Create Gradio interface
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail")
image_input = gr.Image(label="Image", type="pil")
temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
beam_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Beam Size")
submit_button = gr.Button("Submit")
with gr.Column():
output_text = gr.Textbox(label="Output")
submit_button.click(
fn=inference,
inputs=[prompt_input, image_input, temperature_input, beam_size_input],
outputs=output_text
)
# Launch the app
demo.launch()