Spaces:
Build error
Build error
Ketengan-Diffusion-Lab
commited on
Commit
•
2fbbc3e
1
Parent(s):
9aeab55
Update app.py
Browse files
app.py
CHANGED
@@ -4,30 +4,34 @@ import transformers
|
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
from PIL import Image
|
6 |
import warnings
|
|
|
7 |
|
8 |
# disable some warnings
|
9 |
transformers.logging.set_verbosity_error()
|
10 |
transformers.logging.disable_progress_bar()
|
11 |
warnings.filterwarnings('ignore')
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
print(f"Using device: {device}")
|
16 |
|
17 |
model_name = 'cognitivecomputations/dolphin-vision-72b'
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
trust_remote_code=True
|
30 |
-
)
|
31 |
|
32 |
def inference(prompt, image, temperature, beam_size):
|
33 |
messages = [
|
@@ -40,18 +44,17 @@ def inference(prompt, image, temperature, beam_size):
|
|
40 |
)
|
41 |
|
42 |
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
|
43 |
-
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
|
44 |
|
45 |
-
image_tensor = model.process_images([image], model.config)
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
print(f"Device of image_tensor: {image_tensor.device}")
|
51 |
|
52 |
# generate
|
53 |
with torch.cuda.amp.autocast():
|
54 |
-
output_ids = model.generate(
|
55 |
input_ids,
|
56 |
images=image_tensor,
|
57 |
max_new_tokens=1024,
|
@@ -60,23 +63,31 @@ def inference(prompt, image, temperature, beam_size):
|
|
60 |
use_cache=True
|
61 |
)[0]
|
62 |
|
|
|
|
|
|
|
63 |
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
from PIL import Image
|
6 |
import warnings
|
7 |
+
from accelerate import Accelerator
|
8 |
|
9 |
# disable some warnings
|
10 |
transformers.logging.set_verbosity_error()
|
11 |
transformers.logging.disable_progress_bar()
|
12 |
warnings.filterwarnings('ignore')
|
13 |
|
14 |
+
# Initialize Accelerator
|
15 |
+
accelerator = Accelerator()
|
|
|
16 |
|
17 |
model_name = 'cognitivecomputations/dolphin-vision-72b'
|
18 |
|
19 |
+
# Load model and tokenizer within main_process_first context
|
20 |
+
with accelerator.main_process_first():
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
model_name,
|
23 |
+
torch_dtype=torch.float16,
|
24 |
+
device_map="auto",
|
25 |
+
trust_remote_code=True
|
26 |
+
)
|
27 |
+
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
29 |
+
model_name,
|
30 |
+
trust_remote_code=True
|
31 |
+
)
|
32 |
|
33 |
+
# Prepare model
|
34 |
+
model = accelerator.prepare(model)
|
|
|
|
|
35 |
|
36 |
def inference(prompt, image, temperature, beam_size):
|
37 |
messages = [
|
|
|
44 |
)
|
45 |
|
46 |
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
|
47 |
+
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
|
48 |
|
49 |
+
image_tensor = model.process_images([image], model.config)
|
50 |
|
51 |
+
# Move tensors to the appropriate device
|
52 |
+
input_ids = input_ids.to(accelerator.device)
|
53 |
+
image_tensor = image_tensor.to(accelerator.device)
|
|
|
54 |
|
55 |
# generate
|
56 |
with torch.cuda.amp.autocast():
|
57 |
+
output_ids = accelerator.unwrap_model(model).generate(
|
58 |
input_ids,
|
59 |
images=image_tensor,
|
60 |
max_new_tokens=1024,
|
|
|
63 |
use_cache=True
|
64 |
)[0]
|
65 |
|
66 |
+
# Gather output from all processes
|
67 |
+
output_ids = accelerator.gather(output_ids)
|
68 |
+
|
69 |
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
70 |
|
71 |
+
# Only create and launch Gradio interface on the main process
|
72 |
+
if accelerator.is_main_process:
|
73 |
+
with gr.Blocks() as demo:
|
74 |
+
with gr.Row():
|
75 |
+
with gr.Column():
|
76 |
+
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail")
|
77 |
+
image_input = gr.Image(label="Image", type="pil")
|
78 |
+
temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
|
79 |
+
beam_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Beam Size")
|
80 |
+
submit_button = gr.Button("Submit")
|
81 |
+
with gr.Column():
|
82 |
+
output_text = gr.Textbox(label="Output")
|
83 |
+
|
84 |
+
submit_button.click(
|
85 |
+
fn=inference,
|
86 |
+
inputs=[prompt_input, image_input, temperature_input, beam_size_input],
|
87 |
+
outputs=output_text
|
88 |
+
)
|
89 |
+
|
90 |
+
demo.launch(share=True)
|
91 |
|
92 |
+
# Wait for all processes to finish
|
93 |
+
accelerator.wait_for_everyone()
|