Spaces:
Build error
Build error
Ketengan-Diffusion-Lab
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -10,20 +10,23 @@ transformers.logging.set_verbosity_error()
|
|
10 |
transformers.logging.disable_progress_bar()
|
11 |
warnings.filterwarnings('ignore')
|
12 |
|
13 |
-
# set device
|
14 |
-
torch.
|
15 |
|
16 |
model_name = 'cognitivecomputations/dolphin-vision-7b'
|
17 |
|
18 |
-
# create model
|
19 |
model = AutoModelForCausalLM.from_pretrained(
|
20 |
model_name,
|
21 |
torch_dtype=torch.float16,
|
22 |
-
device_map='auto',
|
23 |
-
trust_remote_code=True
|
|
|
|
|
24 |
tokenizer = AutoTokenizer.from_pretrained(
|
25 |
model_name,
|
26 |
-
trust_remote_code=True
|
|
|
27 |
|
28 |
def inference(prompt, image):
|
29 |
messages = [
|
@@ -39,12 +42,12 @@ def inference(prompt, image):
|
|
39 |
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
|
40 |
|
41 |
|
42 |
-
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=
|
43 |
|
44 |
-
# Generate with autocast for mixed precision on GPU
|
45 |
-
with torch.cuda.amp.autocast():
|
46 |
output_ids = model.generate(
|
47 |
-
input_ids.to(
|
48 |
images=image_tensor,
|
49 |
max_new_tokens=2048,
|
50 |
use_cache=True
|
|
|
10 |
transformers.logging.disable_progress_bar()
|
11 |
warnings.filterwarnings('ignore')
|
12 |
|
13 |
+
# set device to a specific GPU (e.g., GPU 0)
|
14 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
15 |
|
16 |
model_name = 'cognitivecomputations/dolphin-vision-7b'
|
17 |
|
18 |
+
# create model and load it to the specified device
|
19 |
model = AutoModelForCausalLM.from_pretrained(
|
20 |
model_name,
|
21 |
torch_dtype=torch.float16,
|
22 |
+
# device_map='auto', # Remove auto device mapping
|
23 |
+
trust_remote_code=True
|
24 |
+
).to(device) # Load the model to the specified device
|
25 |
+
|
26 |
tokenizer = AutoTokenizer.from_pretrained(
|
27 |
model_name,
|
28 |
+
trust_remote_code=True
|
29 |
+
)
|
30 |
|
31 |
def inference(prompt, image):
|
32 |
messages = [
|
|
|
42 |
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
|
43 |
|
44 |
|
45 |
+
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=device)
|
46 |
|
47 |
+
# Generate with autocast for mixed precision on the specified GPU
|
48 |
+
with torch.cuda.amp.autocast():
|
49 |
output_ids = model.generate(
|
50 |
+
input_ids.to(device),
|
51 |
images=image_tensor,
|
52 |
max_new_tokens=2048,
|
53 |
use_cache=True
|