import gradio as gr import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import warnings # disable some warnings transformers.logging.set_verbosity_error() transformers.logging.disable_progress_bar() warnings.filterwarnings('ignore') model_name = 'cognitivecomputations/dolphin-vision-72b' # Set up GPU memory optimization torch.cuda.empty_cache() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Load model with memory optimizations model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto", trust_remote_code=True, offload_folder="offload", # Offload to disk if necessary offload_state_dict=True, # Offload state dict to CPU max_memory={0: "40GB"} # Limit GPU memory usage ) def inference(prompt, image, temperature, beam_size): messages = [ {"role": "user", "content": f'\n{prompt}'} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('')] input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to(device) image_tensor = model.process_images([image], model.config).to(device) # Clear GPU memory torch.cuda.empty_cache() # Generate with memory optimization with torch.cuda.amp.autocast(): output_ids = model.generate( input_ids, images=image_tensor, max_new_tokens=1024, temperature=temperature, num_beams=beam_size, use_cache=True, do_sample=True, repetition_penalty=1.1, length_penalty=1.0, no_repeat_ngram_size=3 )[0] # Clear GPU memory again torch.cuda.empty_cache() return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() # Create Gradio interface with gr.Blocks() as demo: with gr.Row(): with gr.Column(): prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail") image_input = gr.Image(label="Image", type="pil") temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") beam_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Beam Size") submit_button = gr.Button("Submit") with gr.Column(): output_text = gr.Textbox(label="Output") submit_button.click( fn=inference, inputs=[prompt_input, image_input, temperature_input, beam_size_input], outputs=output_text ) # Launch the app demo.launch()