File size: 11,352 Bytes
6ee2eb6
 
 
 
 
 
 
 
 
 
859c0cf
6ee2eb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
859c0cf
 
 
6ee2eb6
 
 
859c0cf
6ee2eb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8232e
4c0f7f0
 
 
6ee2eb6
 
4c0f7f0
6ee2eb6
 
 
 
 
4c0f7f0
6ee2eb6
 
 
 
 
 
4c0f7f0
6ee2eb6
 
 
 
 
 
 
 
 
 
 
 
 
 
43b7a21
 
6ee2eb6
 
 
 
 
 
 
 
 
 
 
eb8232e
801ca35
 
6ee2eb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a238c2
6ee2eb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
import torch
import numpy as np
import cv2
import gradio as gr
from PIL import Image
from datetime import datetime
from morph_attn import DiffMorpherPipeline
from lora_utils import train_lora

LENGTH=450

def train_lora_interface(
    image,
    prompt,
    model_path,
    output_path,
    lora_steps,
    lora_rank,
    lora_lr,
    num
):
    os.makedirs(output_path, exist_ok=True)
    train_lora(image, prompt, output_path, model_path,
               lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_{num}.ckpt", progress=gr.Progress())
    return f"Train LoRA {'A' if num == 0 else 'B'} Done!"

def run_diffmorpher(
    image_0,
    image_1,
    prompt_0,
    prompt_1,
    model_path,
    lora_mode,
    lamb,
    use_adain,
    use_reschedule,
    num_frames,
    fps,
    load_lora_path_0,
    load_lora_path_1,
    output_path
):
    run_id = datetime.now().strftime("%H%M") + "_" +  datetime.now().strftime("%Y%m%d")
    os.makedirs(output_path, exist_ok=True)
    morpher_pipeline = DiffMorpherPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cuda")
    if lora_mode == "Fix LoRA 0":
        fix_lora = 0
    elif lora_mode == "Fix LoRA 1":
        fix_lora = 1
    else:
        fix_lora = None
    if not load_lora_path_0:
        load_lora_path_0 = f"{output_path}/lora_0.ckpt"
    if not load_lora_path_1:
        load_lora_path_1 = f"{output_path}/lora_1.ckpt"
    images = morpher_pipeline(
        img_0=image_0,
        img_1=image_1,
        prompt_0=prompt_0,
        prompt_1=prompt_1,
        load_lora_path_0=load_lora_path_0,
        load_lora_path_1=load_lora_path_1,
        lamb=lamb,
        use_adain=use_adain,
        use_reschedule=use_reschedule,
        num_frames=num_frames,
        fix_lora=fix_lora,
        progress=gr.Progress()
    )
    video_path = f"{output_path}/{run_id}.mp4"
    video = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (512, 512))
    for i, image in enumerate(images):
        # image.save(f"{output_path}/{i}.png")
        video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
    video.release()
    cv2.destroyAllWindows()
    return gr.Video(value=video_path, format="mp4", label="Output video", show_label=True, height=LENGTH, width=LENGTH, interactive=False)

def run_all(
    image_0,
    image_1,
    prompt_0,
    prompt_1,
    model_path,
    lora_mode,
    lamb,
    use_adain,
    use_reschedule,
    num_frames,
    fps,
    load_lora_path_0,
    load_lora_path_1,
    output_path,
    lora_steps,
    lora_rank,
    lora_lr
):
    os.makedirs(output_path, exist_ok=True)
    train_lora(image_0, prompt_0, output_path, model_path,
        lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_0.ckpt", progress=gr.Progress())
    train_lora(image_1, prompt_1, output_path, model_path,
        lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_1.ckpt", progress=gr.Progress())
    return run_diffmorpher(
        image_0,
        image_1,
        prompt_0,
        prompt_1,
        model_path,
        lora_mode,
        lamb,
        use_adain,
        use_reschedule,
        num_frames,
        fps,
        load_lora_path_0,
        load_lora_path_1,
        output_path
    )

with gr.Blocks() as demo:
    
    with gr.Row():
        gr.Markdown("""
        # Official Implementation of [DiffMorpher](https://kevin-thu.github.io/DiffMorpher_page/)
        
        **Note: Try restarting the space if you got an error.** This is because the storage is limited now.
        
        Besides morphing, you can also try animations to make smooth videos too.
        """)

    original_image_0, original_image_1 = gr.State(Image.open("Musk.jpg").convert("RGB").resize((512,512), Image.BILINEAR)), gr.State(Image.open("Feifei.jpg").convert("RGB").resize((512,512), Image.BILINEAR))
    # key_points_0, key_points_1 = gr.State([]), gr.State([])
    # to_change_points = gr.State([])
    
    with gr.Row():
        with gr.Column():
            input_img_0 = gr.Image(type="numpy", label="Input image A", value="Musk.jpg", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
            prompt_0 = gr.Textbox(label="Prompt for image A", value="a photo of an American man", interactive=True)
            with gr.Row():
                train_lora_0_button = gr.Button("Train LoRA A")
                train_lora_1_button = gr.Button("Train LoRA B")
            # show_correspond_button = gr.Button("Show correspondence points")
        with gr.Column():
            input_img_1 = gr.Image(type="numpy", label="Input image B ", value="Feifei.jpg", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
            prompt_1 = gr.Textbox(label="Prompt for image B", value="a photo of an American man", interactive=True)
            with gr.Row():
                clear_button = gr.Button("Clear All")
                run_button = gr.Button("Run w/o LoRA training")
        with gr.Column():
            output_video = gr.Video(format="mp4", label="Output video", show_label=True, height=LENGTH, width=LENGTH, interactive=False)
            lora_progress_bar = gr.Textbox(label="Display LoRA training progress", interactive=False)
            run_all_button = gr.Button("Run!")
        # with gr.Column():
        #     output_video = gr.Video(label="Output video", show_label=True, height=LENGTH, width=LENGTH)
        
    with gr.Row():
        gr.Markdown("""
        ### Usage:
        1. Upload two images (with correspondence) and fill out the prompts. 
           (It's recommended to change `[Output path]` accordingly.)
        2. Click **"Run!"**
        
        Or:
        1. Upload two images (with correspondence) and fill out the prompts.
        2. Click the **"Train LoRA A/B"** button to fit two LoRAs for two images respectively. <br> &nbsp;&nbsp;
           If you have trained LoRA A or LoRA B before, you can skip the step and fill the specific LoRA path in LoRA settings. <br> &nbsp;&nbsp;
           Trained LoRAs are saved to `[Output Path]/lora_0.ckpt` and `[Output Path]/lora_1.ckpt` by default.
        3. You might also change the settings below.
        4. Click **"Run w/o LoRA training"**
        
        ### Note: 
        1. **Try restarting the space if you got an error.** (Because the storage is limited)
        2. To speed up the generation process, you can **ruduce the number of frames** or **turn off "Use Reschedule"**.
        3. You can try the influence of different prompts. It seems that using the same prompts or aligned prompts works better.
        ### Have fun!
        """)
        
    with gr.Accordion(label="Algorithm Parameters"):
        with gr.Tab("Basic Settings"):
            with gr.Row():
                # local_models_dir = 'local_pretrained_models'
                # local_models_choice = \
                #     [os.path.join(local_models_dir,d) for d in os.listdir(local_models_dir) if os.path.isdir(os.path.join(local_models_dir,d))]
                model_path = gr.Text(value="stabilityai/stable-diffusion-2-1-base",
                    label="Diffusion Model Path", interactive=True
                )
                lamb = gr.Slider(value=0.6, minimum=0, maximum=1, step=0.1, label="Lambda for attention replacement", interactive=True)
                lora_mode = gr.Dropdown(value="LoRA Interp",
                    label="LoRA Interp. or Fix LoRA",
                    choices=["LoRA Interp", "Fix LoRA A", "Fix LoRA B"],
                    interactive=True
                )
                use_adain = gr.Checkbox(value=True, label="Use AdaIN", interactive=True)
                use_reschedule = gr.Checkbox(value=True, label="Use Reschedule", interactive=True)
            with gr.Row():
                num_frames = gr.Number(value=16, minimum=0, label="Number of Frames", precision=0, interactive=True)
                fps = gr.Number(value=8, minimum=0, label="FPS (Frame rate)", precision=0, interactive=True)
                output_path = gr.Text(value="./results", label="Output Path", interactive=True)
                
        with gr.Tab("LoRA Settings"):
            with gr.Row():
                lora_steps = gr.Number(value=200, label="LoRA training steps", precision=0, interactive=True)
                lora_lr = gr.Number(value=0.0002, label="LoRA learning rate", interactive=True)
                lora_rank = gr.Number(value=16, label="LoRA rank", precision=0, interactive=True)
                # save_lora_dir = gr.Text(value="./lora", label="LoRA model save path", interactive=True)
                load_lora_path_0 = gr.Text(value="", label="LoRA model load path for image A", interactive=True)
                load_lora_path_1 = gr.Text(value="", label="LoRA model load path for image B", interactive=True)
    
    def store_img(img):
        image = Image.fromarray(img).convert("RGB").resize((512,512), Image.BILINEAR)
        # resize the input to 512x512
        # image = image.resize((512,512), Image.BILINEAR)
        # image = np.array(image)
        # when new image is uploaded, `selected_points` should be empty
        return image
    input_img_0.upload(
        store_img,
        [input_img_0],
        [original_image_0]
    )
    input_img_1.upload(
        store_img,
        [input_img_1],
        [original_image_1]
    )
    
    def clear(LENGTH):
        return gr.Image.update(value=None, width=LENGTH, height=LENGTH), \
            gr.Image.update(value=None, width=LENGTH, height=LENGTH), \
            None, None, None, None
    clear_button.click(
        clear,
        [gr.Number(value=LENGTH, visible=False, precision=0)],
        [input_img_0, input_img_1, original_image_0, original_image_1, prompt_0, prompt_1]
    )
        
    train_lora_0_button.click(
        train_lora_interface,
        [
         original_image_0,
         prompt_0,
         model_path,
         output_path,
         lora_steps,
         lora_rank,
         lora_lr,
         gr.Number(value=0, visible=False, precision=0)
        ],
        [lora_progress_bar]
    )
    
    train_lora_1_button.click(
        train_lora_interface,
        [
         original_image_1,
         prompt_1,
         model_path,
         output_path,
         lora_steps,
         lora_rank,
         lora_lr,
         gr.Number(value=1, visible=False, precision=0)
        ],
        [lora_progress_bar]
    )
    
    run_button.click(
        run_diffmorpher,
        [
         original_image_0,
         original_image_1,
         prompt_0,
         prompt_1,
         model_path,
         lora_mode,
         lamb,
         use_adain,
         use_reschedule,
         num_frames,
         fps,
         load_lora_path_0,
         load_lora_path_1,
         output_path
        ],
        [output_video]
    )
    
    run_all_button.click(
        run_all,
        [
         original_image_0,
         original_image_1,
         prompt_0,
         prompt_1,
         model_path,
         lora_mode,
         lamb,
         use_adain,
         use_reschedule,
         num_frames,
         fps,
         load_lora_path_0,
         load_lora_path_1,
         output_path,
         lora_steps,
         lora_rank,
         lora_lr
        ],
        [output_video]
    )
        
demo.queue().launch(debug=True)