import os
import torch
import numpy as np
import cv2
import gradio as gr
from PIL import Image
from datetime import datetime
from morph_attn import DiffMorpherPipeline
from lora_utils import train_lora
LENGTH=450
def train_lora_interface(
image,
prompt,
model_path,
output_path,
lora_steps,
lora_rank,
lora_lr,
num
):
os.makedirs(output_path, exist_ok=True)
train_lora(image, prompt, output_path, model_path,
lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_{num}.ckpt", progress=gr.Progress())
return f"Train LoRA {'A' if num == 0 else 'B'} Done!"
def run_diffmorpher(
image_0,
image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
load_lora_path_0,
load_lora_path_1,
output_path
):
run_id = datetime.now().strftime("%H%M") + "_" + datetime.now().strftime("%Y%m%d")
os.makedirs(output_path, exist_ok=True)
morpher_pipeline = DiffMorpherPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cuda")
if lora_mode == "Fix LoRA 0":
fix_lora = 0
elif lora_mode == "Fix LoRA 1":
fix_lora = 1
else:
fix_lora = None
if not load_lora_path_0:
load_lora_path_0 = f"{output_path}/lora_0.ckpt"
if not load_lora_path_1:
load_lora_path_1 = f"{output_path}/lora_1.ckpt"
images = morpher_pipeline(
img_0=image_0,
img_1=image_1,
prompt_0=prompt_0,
prompt_1=prompt_1,
load_lora_path_0=load_lora_path_0,
load_lora_path_1=load_lora_path_1,
lamb=lamb,
use_adain=use_adain,
use_reschedule=use_reschedule,
num_frames=num_frames,
fix_lora=fix_lora,
progress=gr.Progress()
)
video_path = f"{output_path}/{run_id}.mp4"
video = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (512, 512))
for i, image in enumerate(images):
# image.save(f"{output_path}/{i}.png")
video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
video.release()
cv2.destroyAllWindows()
return gr.Video(value=video_path, format="mp4", label="Output video", show_label=True, height=LENGTH, width=LENGTH, interactive=False)
def run_all(
image_0,
image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
load_lora_path_0,
load_lora_path_1,
output_path,
lora_steps,
lora_rank,
lora_lr
):
os.makedirs(output_path, exist_ok=True)
train_lora(image_0, prompt_0, output_path, model_path,
lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_0.ckpt", progress=gr.Progress())
train_lora(image_1, prompt_1, output_path, model_path,
lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_1.ckpt", progress=gr.Progress())
return run_diffmorpher(
image_0,
image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
load_lora_path_0,
load_lora_path_1,
output_path
)
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("""
# Official Implementation of [DiffMorpher](https://kevin-thu.github.io/DiffMorpher_page/)
""")
original_image_0, original_image_1 = gr.State(Image.open("Trump.jpg").convert("RGB").resize((512,512), Image.BILINEAR)), gr.State(Image.open("Biden.jpg").convert("RGB").resize((512,512), Image.BILINEAR))
# key_points_0, key_points_1 = gr.State([]), gr.State([])
# to_change_points = gr.State([])
with gr.Row():
with gr.Column():
input_img_0 = gr.Image(type="numpy", label="Input image A", value="Trump.jpg", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
prompt_0 = gr.Textbox(label="Prompt for image A", value="a photo of an American man", interactive=True)
with gr.Row():
train_lora_0_button = gr.Button("Train LoRA A")
train_lora_1_button = gr.Button("Train LoRA B")
# show_correspond_button = gr.Button("Show correspondence points")
with gr.Column():
input_img_1 = gr.Image(type="numpy", label="Input image B ", value="Biden.jpg", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
prompt_1 = gr.Textbox(label="Prompt for image B", value="a photo of an American man", interactive=True)
with gr.Row():
clear_button = gr.Button("Clear All")
run_button = gr.Button("Run w/o LoRA training")
with gr.Column():
output_video = gr.Video(format="mp4", label="Output video", show_label=True, height=LENGTH, width=LENGTH, interactive=False)
lora_progress_bar = gr.Textbox(label="Display LoRA training progress", interactive=False)
run_all_button = gr.Button("Run!")
# with gr.Column():
# output_video = gr.Video(label="Output video", show_label=True, height=LENGTH, width=LENGTH)
with gr.Row():
gr.Markdown("""
### Usage:
1. Upload two images (with correspondence) and fill out the prompts.
(It's recommended to change `[Output path]` accordingly.)
2. Click **"Run!"**
Or:
1. Upload two images (with correspondence) and fill out the prompts.
2. Click the **"Train LoRA A/B"** button to fit two LoRAs for two images respectively.
If you have trained LoRA A or LoRA B before, you can skip the step and fill the specific LoRA path in LoRA settings.
Trained LoRAs are saved to `[Output Path]/lora_0.ckpt` and `[Output Path]/lora_1.ckpt` by default.
3. You might also change the settings below.
4. Click **"Run w/o LoRA training"**
### Note:
1. To speed up the generation process, you can **ruduce the number of frames** or **turn off "Use Reschedule"**.
2. You can try the influence of different prompts. It seems that using the same prompts or aligned prompts works better.
### Have fun!
""")
with gr.Accordion(label="Algorithm Parameters"):
with gr.Tab("Basic Settings"):
with gr.Row():
# local_models_dir = 'local_pretrained_models'
# local_models_choice = \
# [os.path.join(local_models_dir,d) for d in os.listdir(local_models_dir) if os.path.isdir(os.path.join(local_models_dir,d))]
model_path = gr.Text(value="stabilityai/stable-diffusion-2-1-base",
label="Diffusion Model Path", interactive=True
)
lamb = gr.Slider(value=0.6, minimum=0, maximum=1, step=0.1, label="Lambda for attention replacement", interactive=True)
lora_mode = gr.Dropdown(value="LoRA Interp",
label="LoRA Interp. or Fix LoRA",
choices=["LoRA Interp", "Fix LoRA A", "Fix LoRA B"],
interactive=True
)
use_adain = gr.Checkbox(value=True, label="Use AdaIN", interactive=True)
use_reschedule = gr.Checkbox(value=True, label="Use Reschedule", interactive=True)
with gr.Row():
num_frames = gr.Number(value=16, minimum=0, label="Number of Frames", precision=0, interactive=True)
fps = gr.Number(value=8, minimum=0, label="FPS (Frame rate)", precision=0, interactive=True)
output_path = gr.Text(value="./results", label="Output Path", interactive=True)
with gr.Tab("LoRA Settings"):
with gr.Row():
lora_steps = gr.Number(value=200, label="LoRA training steps", precision=0, interactive=True)
lora_lr = gr.Number(value=0.0002, label="LoRA learning rate", interactive=True)
lora_rank = gr.Number(value=16, label="LoRA rank", precision=0, interactive=True)
# save_lora_dir = gr.Text(value="./lora", label="LoRA model save path", interactive=True)
load_lora_path_0 = gr.Text(value="", label="LoRA model load path for image A", interactive=True)
load_lora_path_1 = gr.Text(value="", label="LoRA model load path for image B", interactive=True)
def store_img(img):
image = Image.fromarray(img).convert("RGB").resize((512,512), Image.BILINEAR)
# resize the input to 512x512
# image = image.resize((512,512), Image.BILINEAR)
# image = np.array(image)
# when new image is uploaded, `selected_points` should be empty
return image
input_img_0.upload(
store_img,
[input_img_0],
[original_image_0]
)
input_img_1.upload(
store_img,
[input_img_1],
[original_image_1]
)
def clear(LENGTH):
return gr.Image.update(value=None, width=LENGTH, height=LENGTH), \
gr.Image.update(value=None, width=LENGTH, height=LENGTH), \
None, None, None, None
clear_button.click(
clear,
[gr.Number(value=LENGTH, visible=False, precision=0)],
[input_img_0, input_img_1, original_image_0, original_image_1, prompt_0, prompt_1]
)
train_lora_0_button.click(
train_lora_interface,
[
original_image_0,
prompt_0,
model_path,
output_path,
lora_steps,
lora_rank,
lora_lr,
gr.Number(value=0, visible=False, precision=0)
],
[lora_progress_bar]
)
train_lora_1_button.click(
train_lora_interface,
[
original_image_1,
prompt_1,
model_path,
output_path,
lora_steps,
lora_rank,
lora_lr,
gr.Number(value=1, visible=False, precision=0)
],
[lora_progress_bar]
)
run_button.click(
run_diffmorpher,
[
original_image_0,
original_image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
load_lora_path_0,
load_lora_path_1,
output_path
],
[output_video]
)
run_all_button.click(
run_all,
[
original_image_0,
original_image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
load_lora_path_0,
load_lora_path_1,
output_path,
lora_steps,
lora_rank,
lora_lr
],
[output_video]
)
demo.queue().launch(debug=True)