File size: 7,231 Bytes
2a86421
 
 
 
563b74b
 
 
 
 
 
 
2a86421
bd1e7ad
 
 
563b74b
 
 
 
 
 
 
 
 
2a86421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1e7ad
 
e3a3851
2a86421
 
 
 
 
 
 
 
bd1e7ad
 
 
 
 
a17c2a0
 
bd1e7ad
 
a17c2a0
bd1e7ad
 
 
 
a17c2a0
bd1e7ad
 
 
2a86421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
563b74b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a86421
 
 
 
 
e3a3851
 
2a86421
 
 
 
 
 
 
 
 
 
 
b8136aa
563b74b
 
 
 
9c56932
563b74b
 
2a86421
7bb4689
 
15706b4
2a86421
 
7d83b75
2a86421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch
from peft import PeftModel
import transformers
import gradio as gr
import os
os.system('pip install voicefixer --upgrade')
from voicefixer import VoiceFixer
voicefixer = VoiceFixer()

from TTS.api import TTS
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True)

import whisper
model1 = whisper.load_model("small")

import torchaudio
from speechbrain.pretrained import SpectralMaskEnhancement

enhance_model = SpectralMaskEnhancement.from_hparams(
source="speechbrain/metricgan-plus-voicebank",
savedir="pretrained_models/metricgan-plus-voicebank",
run_opts={"device":"cuda"},
)

assert (
    "LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig

tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")

BASE_MODEL = "decapoda-research/llama-7b-hf"
LORA_WEIGHTS = "tloen/alpaca-lora-7b"

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:
    pass

if device == "cuda":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        load_in_8bit=False,
        torch_dtype=torch.float16,
        device_map="auto",
    )
    model = PeftModel.from_pretrained(
        model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
    )
elif device == "mps":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
else:
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
    )


def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:"""

if device != "cpu":
    model.half()
model.eval()
if torch.__version__ >= "2":
    model = torch.compile(model)


def evaluate(
#    instruction,
    audio,
    upload,
    input=None,
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=128,
    **kwargs,
):

    # load audio and pad/trim it to fit 30 seconds
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)

    # make log-Mel spectrogram and move to the same device as the model1
    mel = whisper.log_mel_spectrogram(audio).to(model1.device)

    # detect the spoken language
    _, probs = model1.detect_language(mel)
    print(f"Detected language: {max(probs, key=probs.get)}")

    # decode the audio
    options = whisper.DecodingOptions()
    result = whisper.decode(model1, mel, options)

    instruction = result.text
    
    prompt = generate_prompt(instruction, input)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)

    tts.tts_to_file(output.split("### Response:")[1].strip(), speaker_wav = upload, language="en", file_path="output.wav")
    
    voicefixer.restore(input="output.wav", # input wav file path
                    output="audio1.wav", # output wav file path
                    cuda=True, # whether to use gpu acceleration
                    mode = 0) # You can try out mode 0, 1, or 2 to find out the best result
    
    noisy = enhance_model.load_audio(
    "audio1.wav"
    ).unsqueeze(0)

    enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
    torchaudio.save("enhanced.wav", enhanced.cpu(), 16000)
    
    return [result.text, output.split("### Response:")[1].strip(), "enhanced.wav"]


g = gr.Interface(
    fn=evaluate,
    inputs=[
        gr.Audio(source="microphone", label = "请开始对话吧!", type="filepath"),
        gr.Audio(source="upload", label = "请上传您喜欢的声音(wav文件)", type="filepath"),
        gr.components.Textbox(lines=2, label="Input", placeholder="none"),
        gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
        gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
        gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
        gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
        gr.components.Slider(
            minimum=1, maximum=512, step=1, value=128, label="Max tokens"
        ),
    ],
    outputs=[
        gr.inputs.Textbox(
            lines=2,
            label="Speech to Text",
        ),
        gr.inputs.Textbox(
            lines=5,
            label="Alpaca-LoRA Output",
        ),
        gr.Audio(label="Audio with Custom Voice"),
    ],
    title="🥳💬💕 - TalktoAI,随时随地,谈天说地!",
    description="🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!",
    article = "Powered by [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). Credit: tloen[https://github.com/tloen]."
)
g.queue(concurrency_count=1)
g.launch(show_error = True)

# Old testing code follows.

"""
if __name__ == "__main__":
    # testing code for readme
    for instruction in [
        "Tell me about alpacas.",
        "Tell me about the president of Mexico in 2019.",
        "Tell me about the king of France in 2019.",
        "List all Canadian provinces in alphabetical order.",
        "Write a Python program that prints the first 10 Fibonacci numbers.",
        "Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.",
        "Tell me five words that rhyme with 'shock'.",
        "Translate the sentence 'I have no mouth but I must scream' into Spanish.",
        "Count up from 1 to 500.",
    ]:
        print("Instruction:", instruction)
        print("Response:", evaluate(instruction))
        print()
"""