File size: 9,136 Bytes
2a86421 563b74b 04ee95f 563b74b b3ead13 2a86421 bd1e7ad 563b74b 2a86421 bd1e7ad e3a3851 2a86421 bd1e7ad a17c2a0 bd1e7ad a17c2a0 bd1e7ad a17c2a0 bd1e7ad 5f412d2 bd1e7ad 2a86421 563b74b 04ee95f d7f82c1 20c9cd5 d7f82c1 563b74b d7f82c1 2a86421 9b47c80 2a86421 9b47c80 9cbc40d 2a86421 b8136aa 563b74b 9c56932 563b74b 2a86421 9b47c80 7bb4689 296598d 2a86421 9b47c80 9cbc40d 9b47c80 6358850 9b47c80 b3ead13 9b47c80 2a86421 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import torch
from peft import PeftModel
import transformers
import gradio as gr
import os
import re
os.system('pip install voicefixer --upgrade')
from voicefixer import VoiceFixer
voicefixer = VoiceFixer()
from TTS.api import TTS
#tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True)
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False)
import whisper
model1 = whisper.load_model("small")
import torchaudio
from speechbrain.pretrained import SpectralMaskEnhancement
enhance_model = SpectralMaskEnhancement.from_hparams(
source="speechbrain/metricgan-plus-voicebank",
savedir="pretrained_models/metricgan-plus-voicebank",
run_opts={"device":"cuda"},
)
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
BASE_MODEL = "decapoda-research/llama-7b-hf"
LORA_WEIGHTS = "tloen/alpaca-lora-7b"
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
if device != "cpu":
model.half()
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
def evaluate(
# instruction,
audio,
upload,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
**kwargs,
):
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model1
mel = whisper.log_mel_spectrogram(audio).to(model1.device)
# detect the spoken language
_, probs = model1.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
# decode the audio
options = whisper.DecodingOptions()
result = whisper.decode(model1, mel, options)
instruction = result.text.strip()
prompt = generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
# tts.tts_to_file(output.split("### Response:")[1].strip(), speaker_wav = upload, language="en", file_path="output.wav")
output1 = output.split("### Response:")[1].strip()
output2 = output1.split("### Instruction:")[0].strip()
tts.tts_to_file(output2, speaker_wav = upload, language="en", file_path="output.wav")
voicefixer.restore(input="output.wav", # input wav file path
output="audio1.wav", # output wav file path
cuda=True, # whether to use gpu acceleration
mode = 0) # You can try out mode 0, 1, or 2 to find out the best result
noisy = enhance_model.load_audio(
"audio1.wav"
).unsqueeze(0)
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
torchaudio.save("enhanced.wav", enhanced.cpu(), 16000)
return [result.text, output2, "enhanced.wav"]
c1 = gr.Interface(
fn=evaluate,
inputs=[
gr.Audio(source="microphone", label = "请开始对话吧!TalktoAI!", type="filepath"),
gr.Audio(source="upload", label = "请上传您喜欢的声音(wav/mp3文件)", type="filepath"),
gr.components.Textbox(lines=2, label="提供对话的背景信息(选填)", placeholder="none"),
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
gr.components.Slider(
minimum=1, maximum=512, step=1, value=128, label="Max tokens"
),
],
outputs=[
gr.inputs.Textbox(
lines=2,
label="Speech to Text",
),
gr.inputs.Textbox(
lines=5,
label="Alpaca-LoRA Output",
),
gr.Audio(label="Audio with Custom Voice"),
],
# title="🥳💬💕 - TalktoAI,随时随地,谈天说地!",
description="🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!",
article = "Powered by [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). Thanks to [tloen](https://github.com/tloen).",
)
c2 = gr.Interface(
fn=evaluate,
inputs=[
gr.Audio(source="microphone", label = "请开始对话吧!TalktoAI!", type="filepath"),
gr.Audio(source="microphone", label = "请上传您喜欢的声音,并尽量避免噪音", type="filepath"),
gr.components.Textbox(lines=2, label="提供对话的背景信息(选填)", placeholder="none"),
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
gr.components.Slider(
minimum=1, maximum=512, step=1, value=128, label="Max tokens"
),
],
outputs=[
gr.inputs.Textbox(
lines=2,
label="Speech to Text",
),
gr.inputs.Textbox(
lines=5,
label="Alpaca-LoRA Output",
),
gr.Audio(label="Audio with Custom Voice"),
],
# title="🥳💬💕 - TalktoAI,随时随地,谈天说地!",
description="🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!",
article = "Powered by [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). Thanks to [tloen](https://github.com/tloen).",
)
demo = gr.TabbedInterface([c1, c2], ["wav/mp3上传", "麦克风上传"], title = '🥳💬💕 - TalktoAI,随时随地,谈天说地!')
demo.queue(concurrency_count=1)
demo.launch()
# Old testing code follows.
"""
if __name__ == "__main__":
# testing code for readme
for instruction in [
"Tell me about alpacas.",
"Tell me about the president of Mexico in 2019.",
"Tell me about the king of France in 2019.",
"List all Canadian provinces in alphabetical order.",
"Write a Python program that prints the first 10 Fibonacci numbers.",
"Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.",
"Tell me five words that rhyme with 'shock'.",
"Translate the sentence 'I have no mouth but I must scream' into Spanish.",
"Count up from 1 to 500.",
]:
print("Instruction:", instruction)
print("Response:", evaluate(instruction))
print()
"""
|