import torch from peft import PeftModel import transformers import gradio as gr import os os.system('pip install voicefixer --upgrade') from voicefixer import VoiceFixer voicefixer = VoiceFixer() from TTS.api import TTS tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True) import whisper model1 = whisper.load_model("small") import torchaudio from speechbrain.pretrained import SpectralMaskEnhancement enhance_model = SpectralMaskEnhancement.from_hparams( source="speechbrain/metricgan-plus-voicebank", savedir="pretrained_models/metricgan-plus-voicebank", run_opts={"device":"cuda"}, ) assert ( "LlamaTokenizer" in transformers._import_structure["models.llama"] ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") BASE_MODEL = "decapoda-research/llama-7b-hf" LORA_WEIGHTS = "tloen/alpaca-lora-7b" if torch.cuda.is_available(): device = "cuda" else: device = "cpu" try: if torch.backends.mps.is_available(): device = "mps" except: pass if device == "cuda": model = LlamaForCausalLM.from_pretrained( BASE_MODEL, load_in_8bit=False, torch_dtype=torch.float16, device_map="auto", ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True ) elif device == "mps": model = LlamaForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, torch_dtype=torch.float16, ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, torch_dtype=torch.float16, ) else: model = LlamaForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, ) def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response:""" if device != "cpu": model.half() model.eval() if torch.__version__ >= "2": model = torch.compile(model) def evaluate( # instruction, audio, upload, input=None, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128, **kwargs, ): # load audio and pad/trim it to fit 30 seconds audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the model1 mel = whisper.log_mel_spectrogram(audio).to(model1.device) # detect the spoken language _, probs = model1.detect_language(mel) print(f"Detected language: {max(probs, key=probs.get)}") # decode the audio options = whisper.DecodingOptions() result = whisper.decode(model1, mel, options) instruction = result.text prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) tts.tts_to_file(output.split("### Response:")[1].strip(), speaker_wav = upload, language="en", file_path="output.wav") voicefixer.restore(input="output.wav", # input wav file path output="audio1.wav", # output wav file path cuda=True, # whether to use gpu acceleration mode = 0) # You can try out mode 0, 1, or 2 to find out the best result noisy = enhance_model.load_audio( "audio1.wav" ).unsqueeze(0) enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.])) torchaudio.save("enhanced.wav", enhanced.cpu(), 16000) return [result.text, output.split("### Response:")[1].strip(), "enhanced.wav"] g = gr.Interface( fn=evaluate, inputs=[ gr.Audio(source="microphone", label = "请开始对话吧!", type="filepath"), gr.Audio(source="upload", label = "请上传您喜欢的声音(wav文件)", type="filepath"), gr.components.Textbox(lines=2, label="Input", placeholder="none"), gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), gr.components.Slider( minimum=1, maximum=512, step=1, value=128, label="Max tokens" ), ], outputs=[ gr.inputs.Textbox( lines=2, label="Speech to Text", ), gr.inputs.Textbox( lines=5, label="Alpaca-LoRA Output", ), gr.Audio(label="Audio with Custom Voice"), ], title="🥳💬💕 - TalktoAI,随时随地,谈天说地!", description="🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!", article = "Powered by [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). Credit: tloen[https://github.com/tloen]." ) g.queue(concurrency_count=1) g.launch(show_error = True) # Old testing code follows. """ if __name__ == "__main__": # testing code for readme for instruction in [ "Tell me about alpacas.", "Tell me about the president of Mexico in 2019.", "Tell me about the king of France in 2019.", "List all Canadian provinces in alphabetical order.", "Write a Python program that prints the first 10 Fibonacci numbers.", "Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.", "Tell me five words that rhyme with 'shock'.", "Translate the sentence 'I have no mouth but I must scream' into Spanish.", "Count up from 1 to 500.", ]: print("Instruction:", instruction) print("Response:", evaluate(instruction)) print() """