Spaces:
Runtime error
Runtime error
File size: 6,941 Bytes
7838411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
"""
TODO:
+ [x] Load Configuration
+ [ ] Multi ASR Engine
+ [ ] Batch / Real Time support
"""
import numpy as np
from pathlib import Path
import jiwer
import pdb
import torch.nn as nn
import torch
import torchaudio
import gradio as gr
from logging import PlaceHolder
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, Wav2Vec2Model, Wav2Vec2CTCTokenizer
from transformers import AutoTokenizer, AutoFeatureExtractor, AutoModelForCTC
from datasets import load_dataset
import datasets
import yaml
from transformers import pipeline
import librosa
import librosa.display
import matplotlib.pyplot as plt
import soundfile as sf
# local import
import sys
from local.vis import token_plot
sys.path.append("src")
# Load automos
config_yaml = "config/samples.yaml"
with open(config_yaml, "r") as f:
# pdb.set_trace()
try:
config = yaml.safe_load(f)
except FileExistsError:
print("Config file Loading Error")
exit()
# Auto load examples
refs = np.loadtxt(config["ref_txt"], delimiter="\n", dtype="str")
refs_ids = [x.split()[0] for x in refs]
refs_txt = [" ".join(x.split()[1:]) for x in refs]
ref_wavs = [str(x) for x in sorted(Path(config["ref_wavs"]).glob("**/*.wav"))]
with open("src/description.html", "r", encoding="utf-8") as f:
description = f.read()
# description
reference_id = gr.Textbox(
value="ID", placeholder="Utter ID", label="Reference_ID"
)
reference_textbox = gr.Textbox(
value="Input reference here",
placeholder="Input reference here",
label="Reference",
)
reference_PPM = gr.Textbox(
placeholder="Pneumatic Voice's PPM", label="Ref PPM"
)
examples = [
[x, y] for x, y in zip(ref_wavs, refs_txt)
]
# def map_to_array(batch):
# speech, _ = sf.read(batch["file"])
# batch["speech"] = speech
# return batch
# ASR part
p = pipeline("automatic-speech-recognition")
import pdb
# Tokenlizer part
# import model, feature extractor, tokenizer
def TOKENLIZER(audio_path, activate_plot=False):
token_model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-base-960h")
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
# # load first sample of English common_voice
# dataset = load_dataset("common_voice", "en", split="train", streaming=True)
# dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000))
# dataset_iter = iter(dataset)
# sample = next(dataset_iter)
# # forward sample through model to get greedily predicted transcription ids
# input_values = feature_extractor(sample["audio"]["array"], return_tensors="pt").input_values
# pdb.set_trace()
input_values, sr = torchaudio.load(audio_path)
if sr != feature_extractor.sampling_rate:
input_values = torchaudio.functional.resample(input_values, sr, feature_extractor.sampling_rate)
logits = token_model(input_values).logits[0]
pred_ids = torch.argmax(logits, axis=-1)
# retrieve word stamps (analogous commands for `output_char_offsets`)
outputs = tokenizer.decode(pred_ids, output_word_offsets=True)
# pdb.set_trace()
# compute `time_offset` in seconds as product of downsampling ratio and sampling_rate
time_offset = token_model.config.inputs_to_logits_ratio / feature_extractor.sampling_rate
word_offsets = [
{
"word": d["word"],
"start_time": round(d["start_offset"] * time_offset, 2),
"end_time": round(d["end_offset"] * time_offset, 2),
}
for d in outputs.word_offsets
]
if activate_plot == True:
token_fig = token_plot(input_values, feature_extractor.sampling_rate, word_offsets)
return word_offsets, token_fig
return word_offsets
# TOKENLIZER("data/samples/p326_020.wav")
# pdb.set_trace()
# Load dataset
# pdb.set_trace()
# dataset = load_dataset("common_voice", "en", split="train", streaming=True)
# dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000))
# dataset_iter = iter(dataset)
# sample = next(dataset_iter)
# pdb.set_trace()
# input_values = feature_extractor(sample["audio"]["array"], return_tensors="pt").input_values
# pdb.set_trace()
# WER part
transformation = jiwer.Compose(
[
jiwer.RemovePunctuation(),
jiwer.ToUpperCase(),
jiwer.RemoveWhiteSpace(replace_by_space=True),
jiwer.RemoveMultipleSpaces(),
jiwer.ReduceToListOfListOfWords(word_delimiter=" "),
]
)
()
class ChangeSampleRate(nn.Module):
def __init__(self, input_rate: int, output_rate: int):
super().__init__()
self.output_rate = output_rate
self.input_rate = input_rate
def forward(self, wav: torch.tensor) -> torch.tensor:
# Only accepts 1-channel waveform input
wav = wav.view(wav.size(0), -1)
new_length = wav.size(-1) * self.output_rate // self.input_rate
indices = torch.arange(new_length) * (
self.input_rate / self.output_rate
)
round_down = wav[:, indices.long()]
round_up = wav[:, (indices.long() + 1).clamp(max=wav.size(-1) - 1)]
output = round_down * (1.0 - indices.fmod(1.0)).unsqueeze(0) + (
round_up * indices.fmod(1.0).unsqueeze(0)
)
return output
# Flagging setup
def calc_wer(audio_path, ref):
wav, sr = torchaudio.load(audio_path)
if wav.shape[0] != 1:
wav = wav[0, :].unsqueeze(0)
print(wav.shape)
osr = 16000
batch = wav.unsqueeze(0).repeat(10, 1, 1)
csr = ChangeSampleRate(sr, osr)
out_wavs = csr(wav)
# ASR
# trans = jiwer.ToUpperCase()(p(audio_path)["text"])
# Tokenlizer
tokens, token_wav_plot = TOKENLIZER(audio_path, activate_plot=True)
# ASR part
trans_cnt = []
for i in tokens:
word, start_time, end_time = i.values()
trans_cnt.append(word)
trans = " ".join(x for x in trans_cnt)
trans = jiwer.ToUpperCase()(trans)
# WER
ref = jiwer.ToUpperCase()(ref)
wer = jiwer.wer(
ref,
trans,
truth_transform=transformation,
hypothesis_transform=transformation,
)
# pdb.set_trace()
return [trans, wer, token_wav_plot]
# calc_wer(examples[1][0], examples[1][1])
# pdb.set_trace()
iface = gr.Interface(
fn=calc_wer,
inputs=[
gr.Audio(
source="upload",
type="filepath",
label="Audio_to_evaluate",
),
reference_textbox,
],
outputs=[
gr.Textbox(placeholder="Hypothesis", label="Hypothesis"),
gr.Textbox(placeholder="Word Error Rate", label="WER"),
gr.Plot(label="waveform")
],
title="Laronix Automatic Speech Recognition",
description=description,
examples=examples,
css=".body {background-color: green}",
)
print("Launch examples")
iface.launch(
share=False,
) |