|
|
|
from random import sample |
|
import gradio as gr |
|
import torchaudio |
|
import torch |
|
import torch.nn as nn |
|
import lightning_module |
|
import pdb |
|
import jiwer |
|
|
|
from transformers import pipeline |
|
p = pipeline("automatic-speech-recognition") |
|
|
|
|
|
transformation = jiwer.Compose([ |
|
jiwer.ToLowerCase(), |
|
jiwer.RemoveWhiteSpace(replace_by_space=True), |
|
jiwer.RemoveMultipleSpaces(), |
|
jiwer.ReduceToListOfListOfWords(word_delimiter=" ") |
|
]) |
|
|
|
class ChangeSampleRate(nn.Module): |
|
def __init__(self, input_rate: int, output_rate: int): |
|
super().__init__() |
|
self.output_rate = output_rate |
|
self.input_rate = input_rate |
|
|
|
def forward(self, wav: torch.tensor) -> torch.tensor: |
|
|
|
wav = wav.view(wav.size(0), -1) |
|
new_length = wav.size(-1) * self.output_rate // self.input_rate |
|
indices = (torch.arange(new_length) * (self.input_rate / self.output_rate)) |
|
round_down = wav[:, indices.long()] |
|
round_up = wav[:, (indices.long() + 1).clamp(max=wav.size(-1) - 1)] |
|
output = round_down * (1. - indices.fmod(1.)).unsqueeze(0) + round_up * indices.fmod(1.).unsqueeze(0) |
|
return output |
|
|
|
model = lightning_module.BaselineLightningModule.load_from_checkpoint("./epoch=3-step=7459.ckpt").eval() |
|
def calc_mos(audio_path, ref): |
|
wav, sr = torchaudio.load(audio_path) |
|
osr = 16_000 |
|
batch = wav.unsqueeze(0).repeat(10, 1, 1) |
|
csr = ChangeSampleRate(sr, osr) |
|
out_wavs = csr(wav) |
|
|
|
trans = p(audio_path)["text"] |
|
|
|
wer = jiwer.wer(ref, trans, truth_transform=transformation, hypothesis_transform=transformation) |
|
|
|
batch = { |
|
'wav': out_wavs, |
|
'domains': torch.tensor([0]), |
|
'judge_id': torch.tensor([288]) |
|
} |
|
with torch.no_grad(): |
|
output = model(batch) |
|
|
|
predic_mos = output.mean(dim=1).squeeze().detach().numpy()*2 + 3 |
|
|
|
return predic_mos, trans, wer |
|
|
|
description =""" |
|
MOS prediction demo using UTMOS-strong w/o phoneme encoder model, which is trained on the main track dataset. |
|
This demo only accepts .wav format. Best at 16 kHz sampling rate. |
|
|
|
Paper is available [here](https://arxiv.org/abs/2204.02152) |
|
""" |
|
|
|
iface = gr.Interface( |
|
fn=calc_mos, |
|
inputs=[gr.Audio(type='filepath'), gr.Textbox(placeholder="Insert referance here", label="Referance")], |
|
outputs=[gr.Textbox("Predicted MOS"), gr.Textbox("Hypothesis"), gr.Textbox("WER")], |
|
title="UTMOS Demo", |
|
description=description, |
|
allow_flagging="auto", |
|
) |
|
iface.launch() |