Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ import torch.nn as nn
|
|
7 |
import lightning_module
|
8 |
import pdb
|
9 |
import jiwer
|
|
|
10 |
# ASR part
|
11 |
from transformers import pipeline
|
12 |
p = pipeline("automatic-speech-recognition")
|
@@ -19,6 +20,11 @@ transformation = jiwer.Compose([
|
|
19 |
jiwer.ReduceToListOfListOfWords(word_delimiter=" ")
|
20 |
])
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
class ChangeSampleRate(nn.Module):
|
23 |
def __init__(self, input_rate: int, output_rate: int):
|
24 |
super().__init__()
|
@@ -35,7 +41,8 @@ class ChangeSampleRate(nn.Module):
|
|
35 |
output = round_down * (1. - indices.fmod(1.)).unsqueeze(0) + round_up * indices.fmod(1.).unsqueeze(0)
|
36 |
return output
|
37 |
|
38 |
-
model = lightning_module.BaselineLightningModule.load_from_checkpoint("
|
|
|
39 |
def calc_mos(audio_path, ref):
|
40 |
wav, sr = torchaudio.load(audio_path)
|
41 |
osr = 16_000
|
@@ -46,7 +53,7 @@ def calc_mos(audio_path, ref):
|
|
46 |
trans = p(audio_path)["text"]
|
47 |
# WER
|
48 |
wer = jiwer.wer(ref, trans, truth_transform=transformation, hypothesis_transform=transformation)
|
49 |
-
|
50 |
batch = {
|
51 |
'wav': out_wavs,
|
52 |
'domains': torch.tensor([0]),
|
@@ -54,10 +61,17 @@ def calc_mos(audio_path, ref):
|
|
54 |
}
|
55 |
with torch.no_grad():
|
56 |
output = model(batch)
|
57 |
-
|
58 |
predic_mos = output.mean(dim=1).squeeze().detach().numpy()*2 + 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
return predic_mos, trans, wer
|
61 |
|
62 |
description ="""
|
63 |
MOS prediction demo using UTMOS-strong w/o phoneme encoder model, which is trained on the main track dataset.
|
@@ -71,9 +85,14 @@ Add WER interface.
|
|
71 |
|
72 |
iface = gr.Interface(
|
73 |
fn=calc_mos,
|
74 |
-
inputs=[gr.Audio(type='filepath'
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
description=description,
|
78 |
allow_flagging="auto",
|
79 |
)
|
|
|
7 |
import lightning_module
|
8 |
import pdb
|
9 |
import jiwer
|
10 |
+
|
11 |
# ASR part
|
12 |
from transformers import pipeline
|
13 |
p = pipeline("automatic-speech-recognition")
|
|
|
20 |
jiwer.ReduceToListOfListOfWords(word_delimiter=" ")
|
21 |
])
|
22 |
|
23 |
+
# WPM part
|
24 |
+
from transformers import Wav2Vec2PhonemeCTCTokenizer, Wav2Vec2Processor, Wav2Vec2ForCTC
|
25 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
26 |
+
phoneme_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
27 |
+
|
28 |
class ChangeSampleRate(nn.Module):
|
29 |
def __init__(self, input_rate: int, output_rate: int):
|
30 |
super().__init__()
|
|
|
41 |
output = round_down * (1. - indices.fmod(1.)).unsqueeze(0) + round_up * indices.fmod(1.).unsqueeze(0)
|
42 |
return output
|
43 |
|
44 |
+
model = lightning_module.BaselineLightningModule.load_from_checkpoint("epoch=3-step=7459.ckpt").eval()
|
45 |
+
|
46 |
def calc_mos(audio_path, ref):
|
47 |
wav, sr = torchaudio.load(audio_path)
|
48 |
osr = 16_000
|
|
|
53 |
trans = p(audio_path)["text"]
|
54 |
# WER
|
55 |
wer = jiwer.wer(ref, trans, truth_transform=transformation, hypothesis_transform=transformation)
|
56 |
+
# MOS
|
57 |
batch = {
|
58 |
'wav': out_wavs,
|
59 |
'domains': torch.tensor([0]),
|
|
|
61 |
}
|
62 |
with torch.no_grad():
|
63 |
output = model(batch)
|
|
|
64 |
predic_mos = output.mean(dim=1).squeeze().detach().numpy()*2 + 3
|
65 |
+
# Phonemes per minute (PPM)
|
66 |
+
with torch.no_grad():
|
67 |
+
logits = phoneme_model(out_wavs).logits
|
68 |
+
phone_predicted_ids = torch.argmax(logits, dim=-1)
|
69 |
+
phone_transcription = processor.batch_decode(phone_predicted_ids)
|
70 |
+
lst_phonemes = phone_transcription[0].split(" ")
|
71 |
+
wav_vad = torchaudio.functional.vad(wav, sample_rate=sr)
|
72 |
+
ppm = len(lst_phonemes) / (wav_vad.shape[-1] / sr) * 60
|
73 |
|
74 |
+
return predic_mos, trans, wer, phone_transcription, ppm
|
75 |
|
76 |
description ="""
|
77 |
MOS prediction demo using UTMOS-strong w/o phoneme encoder model, which is trained on the main track dataset.
|
|
|
85 |
|
86 |
iface = gr.Interface(
|
87 |
fn=calc_mos,
|
88 |
+
inputs=[gr.Audio(type='filepath', label="Audio to evaluate"),
|
89 |
+
gr.Textbox(placeholder="Input referance here", label="Referance")],
|
90 |
+
outputs=[gr.Textbox(placeholder="Predicted MOS", label="Predicted MOS"),
|
91 |
+
gr.Textbox(placeholder="Hypothesis", label="Hypothesis"),
|
92 |
+
gr.Textbox(placeholder="Word Error Rate", label = "WER"),
|
93 |
+
gr.Textbox(placeholder="Predicted Phonemes", label="Predicted Phonemes"),
|
94 |
+
gr.Textbox(placeholder="Phonemes per minutes", label="PPM")],
|
95 |
+
title="Laronix's Voice Quality Checking System Demo",
|
96 |
description=description,
|
97 |
allow_flagging="auto",
|
98 |
)
|