|
from random import sample |
|
import gradio as gr |
|
import torchaudio |
|
import torch |
|
import torch.nn as nn |
|
import lightning_module |
|
import pdb |
|
import jiwer |
|
from local.convert_metrics import nat2avaMOS, WER2INTELI |
|
from local.indicator_plot import Intelligibility_Plot, Naturalness_Plot |
|
from local.pitch_contour import draw_spec_db_pitch |
|
|
|
from transformers import pipeline |
|
p = pipeline("automatic-speech-recognition") |
|
|
|
|
|
transformation = jiwer.Compose([ |
|
jiwer.ToLowerCase(), |
|
jiwer.RemoveWhiteSpace(replace_by_space=True), |
|
jiwer.RemoveMultipleSpaces(), |
|
jiwer.ReduceToListOfListOfWords(word_delimiter=" ") |
|
]) |
|
|
|
|
|
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC |
|
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft") |
|
phoneme_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft") |
|
|
|
class ChangeSampleRate(nn.Module): |
|
def __init__(self, input_rate: int, output_rate: int): |
|
super().__init__() |
|
self.output_rate = output_rate |
|
self.input_rate = input_rate |
|
|
|
def forward(self, wav: torch.tensor) -> torch.tensor: |
|
|
|
wav = wav.view(wav.size(0), -1) |
|
new_length = wav.size(-1) * self.output_rate // self.input_rate |
|
indices = (torch.arange(new_length) * (self.input_rate / self.output_rate)) |
|
round_down = wav[:, indices.long()] |
|
round_up = wav[:, (indices.long() + 1).clamp(max=wav.size(-1) - 1)] |
|
output = round_down * (1. - indices.fmod(1.)).unsqueeze(0) + round_up * indices.fmod(1.).unsqueeze(0) |
|
return output |
|
|
|
model = lightning_module.BaselineLightningModule.load_from_checkpoint("epoch=3-step=7459.ckpt").eval() |
|
|
|
def calc_mos(audio_path, ref): |
|
wav, sr = torchaudio.load(audio_path, channels_first=True) |
|
if wav.shape[0] > 1: |
|
wav = wav.mean(dim=0, keepdim=True) |
|
|
|
|
|
osr = 16_000 |
|
batch = wav.unsqueeze(0).repeat(10, 1, 1) |
|
csr = ChangeSampleRate(sr, osr) |
|
out_wavs = csr(wav) |
|
db = torchaudio.transforms.AmplitudeToDB(stype="amplitude", top_db=80)(wav) |
|
|
|
trans = p(audio_path)["text"] |
|
|
|
wer = jiwer.wer(ref, trans, truth_transform=transformation, hypothesis_transform=transformation) |
|
|
|
INTELI_score = WER2INTELI(wer*100) |
|
|
|
INT_fig = Intelligibility_Plot(INTELI_score) |
|
|
|
|
|
batch = { |
|
'wav': out_wavs, |
|
'domains': torch.tensor([0]), |
|
'judge_id': torch.tensor([288]) |
|
} |
|
with torch.no_grad(): |
|
output = model(batch) |
|
predic_mos = output.mean(dim=1).squeeze().detach().numpy()*2 + 3 |
|
|
|
AVA_MOS = nat2avaMOS(predic_mos) |
|
|
|
MOS_fig = Naturalness_Plot(AVA_MOS) |
|
|
|
|
|
with torch.no_grad(): |
|
logits = phoneme_model(out_wavs).logits |
|
phone_predicted_ids = torch.argmax(logits, dim=-1) |
|
phone_transcription = processor.batch_decode(phone_predicted_ids) |
|
lst_phonemes = phone_transcription[0].split(" ") |
|
wav_vad = torchaudio.functional.vad(wav, sample_rate=sr) |
|
|
|
|
|
f0_db_fig = draw_spec_db_pitch(audio_path, save_fig_path=None) |
|
|
|
ppm = len(lst_phonemes) / (wav_vad.shape[-1] / sr) * 60 |
|
|
|
|
|
return AVA_MOS, MOS_fig, INTELI_score, INT_fig, trans, phone_transcription, ppm , f0_db_fig |
|
|
|
|
|
with open("local/description.md") as f: |
|
description = f.read() |
|
|
|
|
|
|
|
|
|
examples = [ |
|
["local/Julianna_Set1_Author_01.wav", "Once upon a time, there was a young rat named Arthur who couldn't make up his mind."], |
|
["local/Patient_Arthur_set1_002_noisy.wav", "Whenever the other rats asked him if he would like to go hunting with them, he would answer in a soft voice, 'I don't know.'"], |
|
] |
|
iface = gr.Interface( |
|
fn=calc_mos, |
|
inputs=[gr.Audio(type='filepath', label="Audio to evaluate"), |
|
gr.Textbox(placeholder="Input reference here (Don't keep this empty)", label="Reference")], |
|
outputs=[gr.Textbox(placeholder="Naturalness Score, ranged from 1 to 5, the higher the better.", label="Naturalness Score, ranged from 0 to 5, the higher the better.", visible=False), |
|
gr.Plot(label="Naturalness Score, ranged from 1 to 5, the higher the better.", show_label=True, container=True), |
|
gr.Textbox(placeholder="Intelligibility Score", label = "Intelligibility Score, range from 0 to 100, the higher the better", visible=False), |
|
gr.Plot(label="Intelligibility Score, range from 0 to 100, the higher the better", show_label=True, container=True), |
|
gr.Textbox(placeholder="Hypothesis", label="Hypothesis"), |
|
gr.Textbox(placeholder="Predicted Phonemes", label="Predicted Phonemes", visible=False), |
|
gr.Textbox(placeholder="Speaking Rate, Phonemes per minutes", label="Speaking Rate, Phonemes per minutes", visible=False), |
|
gr.Plot(label="Pitch Contour and dB Analysis", show_label=True, container=True)], |
|
title="Speech Analysis by Laronix AI", |
|
description=description, |
|
allow_flagging="auto", |
|
examples=examples, |
|
) |
|
|
|
iface.launch(share=False, auth=['Laronix', 'LaronixSLP'], auth_message="Authentication Required, ask kevin@laronix.com for password.\n Thanks for your cooperation!") |