Upload lightning_module.py
Browse files- lightning_module.py +41 -0
lightning_module.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytorch_lightning as pl
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
import hydra
|
7 |
+
from model import load_ssl_model, PhonemeEncoder, DomainEmbedding, LDConditioner, Projection
|
8 |
+
|
9 |
+
|
10 |
+
class BaselineLightningModule(pl.LightningModule):
|
11 |
+
def __init__(self, cfg):
|
12 |
+
super().__init__()
|
13 |
+
self.cfg = cfg
|
14 |
+
self.construct_model()
|
15 |
+
self.save_hyperparameters()
|
16 |
+
|
17 |
+
def construct_model(self):
|
18 |
+
self.feature_extractors = nn.ModuleList([
|
19 |
+
load_ssl_model(cp_path='wav2vec_small.pt'),
|
20 |
+
DomainEmbedding(3,128),
|
21 |
+
])
|
22 |
+
output_dim = sum([ feature_extractor.get_output_dim() for feature_extractor in self.feature_extractors])
|
23 |
+
output_layers = [
|
24 |
+
LDConditioner(judge_dim=128,num_judges=3000,input_dim=output_dim)
|
25 |
+
]
|
26 |
+
output_dim = output_layers[-1].get_output_dim()
|
27 |
+
output_layers.append(
|
28 |
+
Projection(hidden_dim=2048,activation=torch.nn.ReLU(),range_clipping=False,input_dim=output_dim)
|
29 |
+
|
30 |
+
)
|
31 |
+
|
32 |
+
self.output_layers = nn.ModuleList(output_layers)
|
33 |
+
|
34 |
+
def forward(self, inputs):
|
35 |
+
outputs = {}
|
36 |
+
for feature_extractor in self.feature_extractors:
|
37 |
+
outputs.update(feature_extractor(inputs))
|
38 |
+
x = outputs
|
39 |
+
for output_layer in self.output_layers:
|
40 |
+
x = output_layer(x,inputs)
|
41 |
+
return x
|