Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,981 Bytes
fabaa3c 437063b fabaa3c 1001ad3 fabaa3c 0fe027e 1001ad3 e9060e2 fabaa3c 43d3ba0 e9380f2 1001ad3 ce441ed 50764bf ce441ed fabaa3c 795e26d fabaa3c 795e26d fabaa3c e9380f2 fabaa3c a4c2f04 fabaa3c 795e26d fabaa3c dd7d8ba c5ecf2c fabaa3c dd7d8ba fabaa3c 1c3458d fabaa3c dd7d8ba 5b3a290 0e92f07 1c3458d 0e92f07 fabaa3c 0e92f07 1c3458d 0e92f07 1c3458d 3736069 0e92f07 1c3458d dd7d8ba 1c3458d fabaa3c 437063b e9060e2 fabaa3c 700b80f 1001ad3 a4c2f04 1001ad3 18ba3fa fabaa3c 437063b 5c541d7 fabaa3c 5c541d7 fabaa3c 5c541d7 437063b 5c541d7 700b80f fabaa3c 5c541d7 fabaa3c 700b80f fabaa3c 437063b fabaa3c 700b80f fabaa3c e9060e2 d5d46ba fabaa3c 1001ad3 b9f0b89 1001ad3 7bbaee5 1001ad3 7bbaee5 1001ad3 ce441ed 1001ad3 fabaa3c 1001ad3 fabaa3c 1001ad3 fabaa3c 1001ad3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import os
import time
import copy
import requests
import random
from threading import Thread
from typing import List, Dict, Union
import subprocess
# Install flash attention, skipping CUDA build if necessary
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
import torch
import gradio as gr
from bs4 import BeautifulSoup
import datasets
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from huggingface_hub import InferenceClient
from PIL import Image
import spaces
from functools import lru_cache
import cv2
import re
import io # Add this import for working with image bytes
# You can also use models that are commented below
# model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
# model_id = "llava-hf/llava-interleave-qwen-7b-hf"
model_id = "llava-hf/llava-interleave-qwen-7b-dpo-hf"
processor = LlavaProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16, use_flash_attention_2=True, low_cpu_mem_usage=True)
model.to("cuda")
# Credit to merve for code of llava interleave qwen
def sample_frames(video_file, num_frames) :
try:
video = cv2.VideoCapture(video_file)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(video.get(cv2.CAP_PROP_FPS))
# extracts 5 images/sec of video
if (total_frames/fps) < 3:
num_frames = 12
else:
num_frames = ((total_frames//fps)*5)
interval = total_frames // num_frames
frames = []
for i in range(total_frames):
ret, frame = video.read()
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if not ret:
continue
if i % interval == 0:
frames.append(pil_img)
video.release()
return frames
except:
frames=[]
return frames
# Path to example images
examples_path = os.path.dirname(__file__)
EXAMPLES = [
[
{
"text": "Bitcoin price live",
}
],
[
{
"text": "Today News about AI",
}
],
[
{
"text": "Explain the cause of Accident",
"files": [f"{examples_path}/example_video/accident.mp4"],
}
],
[
{
"text": "Who are they? Tell me about both of them",
"files": [f"{examples_path}/example_images/elon_smoking.jpg",
f"{examples_path}/example_images/steve_jobs.jpg", ]
}
],
[
{
"text": "Create five images of supercars, each in a different color.",
}
],
[
{
"text": "Create a Photorealistic image of the Eiffel Tower.",
}
],
[
{
"text": "Chase wants to buy 4 kilograms of oval beads and 5 kilograms of star-shaped beads. How much will he spend?",
"files": [f"{examples_path}/example_images/mmmu_example.jpeg"],
}
],
[
{
"text": "Create an online ad for this product.",
"files": [f"{examples_path}/example_images/shampoo.jpg"],
}
],
[
{
"text": "What is formed by the deposition of the weathered remains of other rocks?",
"files": [f"{examples_path}/example_images/ai2d_example.jpeg"],
}
],
[
{
"text": "What's unusual about this image?",
"files": [f"{examples_path}/example_images/dragons_playing.png"],
}
],
]
# Set bot avatar image
BOT_AVATAR = "OpenAI_logo.png"
# Perform a Google search and return the results
@lru_cache(maxsize=128)
def extract_text_from_webpage(html_content):
"""Extracts visible text from HTML content using BeautifulSoup."""
soup = BeautifulSoup(html_content, "html.parser")
for tag in soup(["script", "style", "header", "footer", "nav", "form", "svg"]):
tag.extract()
visible_text = soup.get_text(strip=True)
return visible_text
# Perform a Google search and return the results
def search(term, num_results=3, lang="en", advanced=True, timeout=5, safe="active", ssl_verify=None):
"""Performs a Google search and returns the results."""
start = 0
all_results = []
# Limit the number of characters from each webpage to stay under the token limit
max_chars_per_page = 8000 # Adjust this value based on your token limit and average webpage length
with requests.Session() as session:
resp = session.get(
url="https://www.google.com/search",
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
params={
"q": term,
"num": num_results,
"udm": 14,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status()
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
try:
webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"})
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
# Truncate text if it's too long
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page]
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException as e:
print(f"Error fetching or processing {link}: {e}")
all_results.append({"link": link, "text": None})
else:
all_results.append({"link": None, "text": None})
return all_results
# Format the prompt for the language model
def format_prompt(user_prompt, chat_history):
prompt = "<s>"
for item in chat_history:
# Check if the item is a tuple (text response)
if isinstance(item, tuple):
prompt += f"[INST] {item[0]} [/INST]" # User prompt
prompt += f" {item[1]}</s> " # Bot response
# Otherwise, assume it's related to an image - you might need to adjust this logic
else:
# Handle image representation in the prompt, e.g., add a placeholder
prompt += f" [Image] "
prompt += f"[INST] {user_prompt} [/INST]"
return prompt
chat_history = []
history = ""
def update_history(answer="", question=""):
global chat_history
global history
history += f"([ USER: {question}, OpenGPT 4o: {answer} ]),"
chat_history.append((question, answer))
return history
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
client_mistral = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
generate_kwargs = dict( max_new_tokens=4000, do_sample=True, stream=True, details=True, return_full_text=False )
system_llava = "<|im_start|>system\nYou are OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. Your task is to fulfill users query in best possible way. You are provided with image, videos and 3d structures as input with question your task is to give best possible result and explaination to user.<|im_end|>"
@spaces.GPU(duration=60, queue=False)
def model_inference(
user_prompt,
chat_history,
web_search,
):
# Define generation_args at the beginning of the function
generation_args = {}
# Web search logic
if not user_prompt["files"]:
if web_search is True:
gr.Info("Searching Web")
web_results = search(user_prompt["text"])
gr.Info("Extracting relevant Info")
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
formatted_prompt = format_prompt(
f"""You are OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. You are provided with WEB info from which you can find informations to answer. You do not say Unnecesarry things Only say thing which is important and relevant. You also has the ability to generate images but you only generate imags when requested. BY Utilizing the following link structure, : ![](https://image.pollinations.ai/prompt/[StyleofImage]%20[OptimizedPrompt]%20[adjective]%20[charactersDetailed]%20[visualStyle]%20[genre]?width=[width]&height=[height]&nologo=poll&nofeed=yes&seed=[random]) For image generation, You replace info inside bracets with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience. Note: 1. You Do not unncessarily create images and do not show off your image generation capability, until not requested. 2. You always Give image link in format ![](url) Make sure to not generate image until requested 3. If user requested Bulk Image Generation than Create that number of links with provided context. 4. Always learn from previous conversation. 5. Always try to connect conversation with history. 6. Do not make conversation too long. 7. Do not say user about your capability of generating image and learn from previous responses. My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations.You remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question. Make sure to not generate image until requested [USER] {user_prompt} [WEB] {web2} [OpenGPT 4o]""",
chat_history)
stream = client_mistral.text_generation(formatted_prompt, **generate_kwargs)
output = ""
gr.Info("Generating Answer")
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
yield output
else:
messages = f"<|im_start|>system\nYou are OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. You do not say Unnecesarry things Only say thing which is important and relevant. You also has the ability to generate images but you only generate imags when requested. BY Utilizing the following link structure, : ![](https://image.pollinations.ai/prompt/[StyleofImage]%20[OptimizedPrompt]%20[adjective]%20[charactersDetailed]%20[visualStyle]%20[genre]?width=[width]&height=[height]&nologo=poll&nofeed=yes&seed=[random]) For image generation, You replace info inside bracets with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience. Note: 1. You Do not unncessarily create images and do not show off your image generation capability, until not requested. 2. You always Give image link in format ![](url) 3. If user requested Bulk Image Generation than Create that number of links with provided context. 4. Always learn from previous conversation. 5. Always try to connect conversation with history. 6. Do not make conversation too long. 7. Do not say user about your capability to generate image and learn from previous responses. My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations. I am constantly evolving, ensuring that I remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question.<|im_end|>"
for msg in history:
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
messages+=f"\n<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n"
stream = client_mixtral.text_generation(messages, **generate_kwargs)
output = ""
# Construct the output from the stream of tokens
for response in stream:
if not response.token.text == "<|im_end|>":
output += response.token.text
yield output
update_history(output, user_prompt)
print(history)
return
else:
if user_prompt["files"]:
image = user_prompt["files"][-1]
else:
for hist in history:
if type(hist[0])==tuple:
image = hist[0][0]
txt = user_prompt["text"]
img = user_prompt["files"]
ext_buffer =f"'user\ntext': '{txt}', 'files': '{img}' assistant"
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
image_extensions = Image.registered_extensions()
image_extensions = tuple([ex for ex, f in image_extensions.items()])
if image.endswith(video_extensions):
image = sample_frames(image, 12)
image_tokens = "<image>" * int(len(image))
prompt = f"<|im_start|>user {image_tokens}\n{user_prompt}<|im_end|><|im_start|>assistant"
elif image.endswith(image_extensions):
image = Image.open(image).convert("RGB")
prompt = f"<|im_start|>user <image>\n{user_prompt}<|im_end|><|im_start|>assistant"
final_prompt = f"{system_llava}\n{prompt}"
inputs = processor(prompt, image, return_tensors="pt").to("cuda", torch.float16)
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048, do_sample=True)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
reply = buffer[len(ext_buffer):]
yield reply
update_history(reply, user_prompt)
return
# Create a chatbot interface
chatbot = gr.Chatbot(
label="OpenGPT-4o",
avatar_images=[None, BOT_AVATAR],
show_copy_button=True,
likeable=True,
layout="panel"
)
output = gr.Textbox(label="Prompt") |