File size: 22,825 Bytes
fabaa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fe027e
e9060e2
fabaa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
795e26d
fabaa3c
 
 
 
795e26d
fabaa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
795e26d
fabaa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6dd7da
 
 
c5ecf2c
 
 
b6dd7da
 
 
 
 
 
 
 
c5ecf2c
b6dd7da
 
c5ecf2c
 
 
 
fabaa3c
 
c5ecf2c
fabaa3c
b6dd7da
fabaa3c
c5ecf2c
 
b6dd7da
 
 
 
 
 
c5ecf2c
b6dd7da
c5ecf2c
5b3a290
c5ecf2c
8aab0b7
c5ecf2c
fabaa3c
b6dd7da
 
5b3a290
 
 
c5ecf2c
b6dd7da
 
 
 
8aab0b7
fabaa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9060e2
 
 
 
 
 
 
 
 
fabaa3c
 
8aab0b7
fabaa3c
 
 
 
 
 
 
 
ad83e99
fabaa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9060e2
fabaa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9060e2
fabaa3c
 
 
 
 
 
 
 
 
 
e9060e2
fabaa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad83e99
fabaa3c
 
 
 
ad83e99
fabaa3c
 
ad83e99
 
fabaa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9060e2
fabaa3c
 
 
 
 
 
 
 
 
 
 
 
 
ad83e99
fabaa3c
 
 
 
 
 
 
dcc8dfb
fabaa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad83e99
fabaa3c
ad83e99
fabaa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
ad83e99
fabaa3c
ad83e99
 
fabaa3c
 
 
ad83e99
fabaa3c
 
 
 
 
769e1d0
fabaa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import os
import time
import copy
import urllib
import requests
import random
from threading import Thread
from typing import List, Dict, Union
import subprocess
# Install flash attention, skipping CUDA build if necessary
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)
import torch
import gradio as gr
from bs4 import BeautifulSoup
import datasets
from transformers import TextIteratorStreamer
from transformers import Idefics2ForConditionalGeneration
from transformers import AutoProcessor
from huggingface_hub import InferenceClient
from PIL import Image
import spaces
from functools import lru_cache
import io  # Add this import for working with image bytes

# Set device to CUDA if available, otherwise CPU
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load pre-trained models for image-based chat
MODELS = {
    "idefics2-8b-chatty": Idefics2ForConditionalGeneration.from_pretrained(
        "HuggingFaceM4/idefics2-8b-chatty",
        torch_dtype=torch.float16,
        _attn_implementation="flash_attention_2",
    ).to(DEVICE),
}

# Load pre-trained processor for image-based chat
PROCESSOR = AutoProcessor.from_pretrained(
    "HuggingFaceM4/idefics2-8b",
)

# Define system prompt for the image-based chat model
SYSTEM_PROMPT = [
    {
        "role": "system",
        "content": [
            {
                "type": "text",
                "text": """I am OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. Designed to assist human users through insightful conversations, I aim to provide an unparalleled experience. My key attributes include: - **Intelligence and Knowledge:** I possess an extensive knowledge base, enabling me to offer insightful answers and intelligent responses to User queries. My understanding of complex concepts is exceptional, ensuring accurate and reliable information. - **Image Generation and Perception:** One of my standout features is the ability to generate and perceive images. Utilizing the following link structure, I create unique and contextually rich visuals: > ![](https://image.pollinations.ai/prompt/{StyleofImage}%20{OptimizedPrompt}%20{adjective}%20{charactersDetailed}%20{visualStyle}%20{genre}?width={width}&height={height}&nologo=poll&nofeed=yes&seed={random})For image generation, I replace {info inside curly braces} with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience. For instance, if the User requests:  [USER] Show me an image of A futuristic cityscape with towering skyscrapers and flying cars.  [OpenGPT 4o] Generating Image you requested:  ![](https://image.pollinations.ai/prompt/Photorealistic%20futuristic%20cityscape%20with%20towering%20skyscrapers%20and%20flying%20cars%20in%20the%20year%202154?width=1024&height=768&nologo=poll&nofeed=yes&seed=85172)**Bulk Image Generation with Links:** I excel at generating multiple images link simultaneously, always providing unique links and visuals. I ensure that each image is distinct and captivates the User.Note: Make sure to always provide image links starting with ! .As given in examples. My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations. I am constantly evolving, ensuring that I remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question."""
            },
        ],
    },
    {
        "role": "assistant",
        "content": [
            {
                "type": "text",
                "text": "Hello, I'm OpenGPT 4o, made by KingNish. How can I help you? I can chat with you, generate images, classify images and even do all these work in bulk",
            },
        ],
    }
]

# Path to example images
examples_path = os.path.dirname(__file__)
EXAMPLES = [
    [
        {
            "text": "Bitcoin price live",
        }
    ],
    [
        {
            "text": "Today News about AI",
        }
    ],
    [
        {
            "text": "Read what's written on the paper.",
            "files": [f"{examples_path}/example_images/paper_with_text.png"],
        }
    ],
    [
        {
            "text": "Identify two famous people in the modern world.",
            "files": [f"{examples_path}/example_images/elon_smoking.jpg",
                      f"{examples_path}/example_images/steve_jobs.jpg", ]
        }
    ],
    [
        {
            "text": "Create five images of supercars, each in a different color.",
        }
    ],
    [
        {
            "text": "Create a Photorealistic image of the Eiffel Tower.",
        }
    ],
    [
        {
            "text": "Chase wants to buy 4 kilograms of oval beads and 5 kilograms of star-shaped beads. How much will he spend?",
            "files": [f"{examples_path}/example_images/mmmu_example.jpeg"],
        }
    ],
    [
        {
            "text": "Create an online ad for this product.",
            "files": [f"{examples_path}/example_images/shampoo.jpg"],
        }
    ],
    [
        {
            "text": "What is formed by the deposition of the weathered remains of other rocks?",
            "files": [f"{examples_path}/example_images/ai2d_example.jpeg"],
        }
    ],
    [
        {
            "text": "What's unusual about this image?",
            "files": [f"{examples_path}/example_images/dragons_playing.png"],
        }
    ],
]

# Set bot avatar image
BOT_AVATAR = "OpenAI_logo.png"

# Chatbot utility functions

# Check if a turn in the chat history only contains media
def turn_is_pure_media(turn):
    return turn[1] is None


# Load image from URL
def load_image_from_url(url):
    with urllib.request.urlopen(url) as response:
        image_data = response.read()
        image_stream = io.BytesIO(image_data)
        image = PIL.Image.open(image_stream)
        return image


# Convert image to bytes
def img_to_bytes(image_path):
    image = Image.open(image_path).convert(mode='RGB')
    buffer = io.BytesIO()
    image.save(buffer, format="JPEG")
    img_bytes = buffer.getvalue()
    image.close()
    return img_bytes


# Format user prompt with image history and system conditioning
def format_user_prompt_with_im_history_and_system_conditioning(
        user_prompt, chat_history) -> List[Dict[str, Union[List, str]]]:
    """
    Produce the resulting list that needs to go inside the processor. It handles the potential image(s), the history, and the system conditioning.
    """
    resulting_messages = copy.deepcopy(SYSTEM_PROMPT)
    resulting_images = []
    for resulting_message in resulting_messages:
        if resulting_message["role"] == "user":
            for content in resulting_message["content"]:
                if content["type"] == "image":
                    resulting_images.append(load_image_from_url(content["image"]))
    # Format history
    for turn in chat_history:
        if not resulting_messages or (
                resulting_messages and resulting_messages[-1]["role"] != "user"
        ):
            resulting_messages.append(
                {
                    "role": "user",
                    "content": [],
                }
            )
        if turn_is_pure_media(turn):
            media = turn[0][0]
            resulting_messages[-1]["content"].append({"type": "image"})
            resulting_images.append(Image.open(media))
        else:
            user_utterance, assistant_utterance = turn
            resulting_messages[-1]["content"].append(
                {"type": "text", "text": user_utterance.strip()}
            )
            resulting_messages.append(
                {
                    "role": "assistant",
                    "content": [{"type": "text", "text": user_utterance.strip()}],
                }
            )
    # Format current input
    if not user_prompt["files"]:
        resulting_messages.append(
            {
                "role": "user",
                "content": [{"type": "text", "text": user_prompt["text"]}],
            }
        )
    else:
        # Choosing to put the image first (i.e. before the text), but this is an arbitrary choice.
        resulting_messages.append(
            {
                "role": "user",
                "content": [{"type": "image"}] * len(user_prompt["files"])
                          + [{"type": "text", "text": user_prompt["text"]}],
            }
        )
        resulting_images.extend([Image.open(path) for path in user_prompt["files"]])
    return resulting_messages, resulting_images


# Extract images from a list of messages
def extract_images_from_msg_list(msg_list):
    all_images = []
    for msg in msg_list:
        for c_ in msg["content"]:
            if isinstance(c_, Image.Image):
                all_images.append(c_)
    return all_images

from duckduckgo_search import DDGS
from threading import Thread
import random
from bs4 import BeautifulSoup
from functools import lru_cache
import requests

_useragent_list = [
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
    'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
]

def get_useragent():
    return random.choice(_useragent_list)

@lru_cache(maxsize=128) 
def extract_text_from_webpage(html_content):
    soup = BeautifulSoup(html_content, "html.parser")
    for tag in soup(["script", "style", "header", "footer", "nav"]):
        tag.extract()
    return soup.get_text(strip=True)

def fetch_and_extract(link, max_chars_per_page):
    """Fetches webpage content and extracts text."""
    try:
        webpage = requests.get(link, headers={"User-Agent": get_useragent()})
        webpage.raise_for_status()
        visible_text = extract_text_from_webpage(webpage.text)
        if len(visible_text) > max_chars_per_page:
            visible_text = visible_text[:max_chars_per_page] + "..."
        return {"link": link, "text": visible_text}
    except requests.exceptions.RequestException as e:
        return {"link": link, "text": None}

def search(term, max_results=2, max_chars_per_page=8000, max_threads=10):
    gr.Info("Searching...")
    """Performs a DuckDuckGo search and extracts text from webpages."""
    all_results = []
    result_block = DDGS().text(term, max_results=max_results)
    threads = []
    for result in result_block:
        if 'href' in result:
            link = result["href"]
            thread = Thread(target=lambda: all_results.append(fetch_and_extract(link, max_chars_per_page)))
            threads.append(thread)
            thread.start()
    for thread in threads:
        thread.join()
    gr.Info("Extracting Important Info..")
    return all_results

# Format the prompt for the language model
def format_prompt(user_prompt, chat_history):
    prompt = "<s>"
    for item in chat_history:
        # Check if the item is a tuple (text response)
        if isinstance(item, tuple):
            prompt += f"[INST] {item[0]} [/INST]"  # User prompt
            prompt += f" {item[1]}</s> "           # Bot response
        # Otherwise, assume it's related to an image - you might need to adjust this logic
        else:
            # Handle image representation in the prompt, e.g., add a placeholder
            prompt += f" [Image] " 
    prompt += f"[INST] {user_prompt} [/INST]"
    return prompt

chat_history = []
history = ""

def update_history(answer="", question=""):
    global chat_history
    global history
    history += f"([ USER: {question}, OpenGPT 4o: {answer} ]),"
    chat_history.append((question, answer))
    return history

# Define a function for model inference
@spaces.GPU(duration=45, queue=False)
def model_inference(
        user_prompt,
        chat_history,
        model_selector,
        decoding_strategy,
        temperature,
        max_new_tokens,
        repetition_penalty,
        top_p,
        web_search,
):
    # Define generation_args at the beginning of the function
    generation_args = {}  

    # Web search logic
    if not user_prompt["files"]:
        if web_search is True:
            """Performs a web search, feeds the results to a language model, and returns the answer."""
            web_results = search(user_prompt["text"])
            web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
            # Load the language model
            client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
            generate_kwargs = dict(
                max_new_tokens=4000,
                do_sample=True,
            )
            # Format the prompt for the language model
            formatted_prompt = format_prompt(
                f"""You are OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. You are provided with WEB info from which you can find informations to answer. You do not say Unnecesarry things Only say thing which is important and relevant. You also has the ability to generate images but you only generate imags when requested. BY Utilizing the following link structure, : ![](https://image.pollinations.ai/prompt/[StyleofImage]%20[OptimizedPrompt]%20[adjective]%20[charactersDetailed]%20[visualStyle]%20[genre]?width=[width]&height=[height]&nologo=poll&nofeed=yes&seed=[random])    For image generation, You replace info inside bracets with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience.     Note: 1. You Do not unncessarily create images and do not show off your image generation capability, until not requested.    2. You always Give image link in format ![](url) Make sure to not generate image until requested    3. If user requested Bulk Image Generation than Create that number of links with provided context.    4. Always learn from previous conversation.    5. Always try to connect conversation with history.    6. Do not make conversation too long.    7. Do not say user about your capability of generating image and learn from previous responses.    My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations.You remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question. Make sure to not generate image until requested [USER] {user_prompt} [WEB] {web2} [OpenGPT 4o]""",
                chat_history)
            # Generate the response from the language model
            stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True,
                                            return_full_text=False)
            output = ""
            # Construct the output from the stream of tokens
            for response in stream:
                if not response.token.text == "</s>":
                    output += response.token.text
                yield output
        else:
            client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
            generate_kwargs = dict(
                max_new_tokens=5000,
                do_sample=True,
            )
            # Format the prompt for the language model
            formatted_prompt = format_prompt(
                f"""You are OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. You do not say Unnecesarry things Only say thing which is important and relevant. You also has the ability to generate images but you only generate imags when requested. BY Utilizing the following link structure, : ![](https://image.pollinations.ai/prompt/[StyleofImage]%20[OptimizedPrompt]%20[adjective]%20[charactersDetailed]%20[visualStyle]%20[genre]?width=[width]&height=[height]&nologo=poll&nofeed=yes&seed=[random])    For image generation, You replace info inside bracets with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience.     Note: 1. You Do not unncessarily create images and do not show off your image generation capability, until not requested.    2. You always Give image link in format ![](url)    3. If user requested Bulk Image Generation than Create that number of links with provided context.    4. Always learn from previous conversation.    5. Always try to connect conversation with history.    6. Do not make conversation too long.    7. Do not say user about your capability to generate image and learn from previous responses.    My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations. I am constantly evolving, ensuring that I remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question. {history} .   [USER] {user_prompt} [OpenGPT 4o]""",
                chat_history)
            # Generate the response from the language model
            stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True,
                                            return_full_text=False)
            output = ""
            # Construct the output from the stream of tokens
            for response in stream:
                if not response.token.text == "</s>":
                    output += response.token.text
                yield output
        update_history(output, user_prompt)
        return
    else:
        if user_prompt["text"].strip() == "" and not user_prompt["files"]:
            gr.Error("Please input a query and optionally an image(s).")
            return  # Stop execution if there's an error

        if user_prompt["text"].strip() == "" and user_prompt["files"]:
            gr.Error("Please input a text query along with the image(s).")
            return  # Stop execution if there's an error

        streamer = TextIteratorStreamer(
            PROCESSOR.tokenizer,
            skip_prompt=True,
            timeout=120.0,
        )
        # Move generation_args initialization here
        generation_args = {
            "max_new_tokens": max_new_tokens,
            "repetition_penalty": repetition_penalty,
            "streamer": streamer,
        }
        assert decoding_strategy in [
            "Greedy",
            "Top P Sampling",
        ]

        if decoding_strategy == "Greedy":
            generation_args["do_sample"] = False
        elif decoding_strategy == "Top P Sampling":
            generation_args["temperature"] = temperature
            generation_args["do_sample"] = True
            generation_args["top_p"] = top_p
        # Creating model inputs
        (
            resulting_text,
            resulting_images,
        ) = format_user_prompt_with_im_history_and_system_conditioning(
            user_prompt=user_prompt,
            chat_history=chat_history,
        )
        prompt = PROCESSOR.apply_chat_template(resulting_text, add_generation_prompt=True)
        inputs = PROCESSOR(
            text=prompt,
            images=resulting_images if resulting_images else None,
            return_tensors="pt",
        )
        inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
        generation_args.update(inputs)
        thread = Thread(
            target=MODELS[model_selector].generate,
            kwargs=generation_args,
        )
        thread.start()
        acc_text = ""
        for text_token in streamer:
            time.sleep(0.01)
            acc_text += text_token
            if acc_text.endswith("<end_of_utterance>"):
                acc_text = acc_text[:-18]
            yield acc_text
        update_history(acc_text, user_prompt)
        return


# Define features for the dataset
FEATURES = datasets.Features(
    {
        "model_selector": datasets.Value("string"),
        "images": datasets.Sequence(datasets.Image(decode=True)),
        "conversation": datasets.Sequence({"User": datasets.Value("string"), "Assistant": datasets.Value("string")}),
        "decoding_strategy": datasets.Value("string"),
        "temperature": datasets.Value("float32"),
        "max_new_tokens": datasets.Value("int32"),
        "repetition_penalty": datasets.Value("float32"),
        "top_p": datasets.Value("int32"),
    }
)

# Define hyper-parameters for generation
max_new_tokens = gr.Slider(
    minimum=2048,
    maximum=16000,
    value=2048,
    step=64,
    interactive=True,
    label="Maximum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
    minimum=0.01,
    maximum=5.0,
    value=1,
    step=0.01,
    interactive=True,
    label="Repetition penalty",
    info="1.0 is equivalent to no penalty",
)
decoding_strategy = gr.Radio(
    [
        "Greedy",
        "Top P Sampling",
    ],
    value="Top P Sampling",
    label="Decoding strategy",
    interactive=True,
    info="Higher values are equivalent to sampling more low-probability tokens.",
)
temperature = gr.Slider(
    minimum=0.0,
    maximum=2.0,
    value=0.5,
    step=0.05,
    visible=True,
    interactive=True,
    label="Sampling temperature",
    info="Higher values will produce more diverse outputs.",
)
top_p = gr.Slider(
    minimum=0.01,
    maximum=0.99,
    value=0.9,
    step=0.01,
    visible=True,
    interactive=True,
    label="Top P",
    info="Higher values are equivalent to sampling more low-probability tokens.",
)

# Create a chatbot interface
chatbot = gr.Chatbot(
    label="OpenGPT-4o-Chatty",
    avatar_images=[None, BOT_AVATAR],
    show_copy_button=True,
    likeable=True,
    layout="panel"
)
output = gr.Textbox(label="Prompt")

# Define model_selector outside any function so it can be accessed globally
model_selector = gr.Dropdown(
    choices=MODELS.keys(),
    value=list(MODELS.keys())[0],
    interactive=True,
    label="Model",
    visible=False,
)