Spaces:
Running
on
Zero
Running
on
Zero
Update chatbot.py
Browse files- chatbot.py +4 -25
chatbot.py
CHANGED
@@ -19,7 +19,6 @@ from huggingface_hub import InferenceClient
|
|
19 |
from PIL import Image
|
20 |
import spaces
|
21 |
from functools import lru_cache
|
22 |
-
import cv2
|
23 |
import re
|
24 |
import io
|
25 |
import json
|
@@ -27,33 +26,13 @@ from gradio_client import Client, file
|
|
27 |
from groq import Groq
|
28 |
|
29 |
# Model and Processor Loading (Done once at startup)
|
30 |
-
MODEL_ID = "Qwen/Qwen2-VL-
|
31 |
model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16).to("cuda").eval()
|
32 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
33 |
|
34 |
GROQ_API_KEY = os.environ.get("GROQ_API_KEY", None)
|
35 |
|
36 |
client_groq = Groq(api_key=GROQ_API_KEY)
|
37 |
-
|
38 |
-
def sample_frames(video_file) :
|
39 |
-
try:
|
40 |
-
video = cv2.VideoCapture(video_file)
|
41 |
-
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
42 |
-
num_frames = 12
|
43 |
-
interval = total_frames // num_frames
|
44 |
-
frames = []
|
45 |
-
for i in range(total_frames):
|
46 |
-
ret, frame = video.read()
|
47 |
-
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
48 |
-
if not ret:
|
49 |
-
continue
|
50 |
-
if i % interval == 0:
|
51 |
-
frames.append(pil_img)
|
52 |
-
video.release()
|
53 |
-
return frames
|
54 |
-
except:
|
55 |
-
frames=[]
|
56 |
-
return frames
|
57 |
|
58 |
|
59 |
# Path to example images
|
@@ -109,7 +88,7 @@ EXAMPLES = [
|
|
109 |
],
|
110 |
[
|
111 |
{
|
112 |
-
"text": "Who are they? Tell me about both of them",
|
113 |
"files": [f"{examples_path}/example_images/elon_smoking.jpg",
|
114 |
f"{examples_path}/example_images/steve_jobs.jpg", ]
|
115 |
}
|
@@ -333,9 +312,9 @@ def model_inference( user_prompt, chat_history):
|
|
333 |
image = image_gen(f"{str(query)}")
|
334 |
yield gr.Image(image[1])
|
335 |
except:
|
336 |
-
|
337 |
seed = random.randint(0,999999)
|
338 |
-
image =
|
339 |
yield gr.Image(image)
|
340 |
|
341 |
|
|
|
19 |
from PIL import Image
|
20 |
import spaces
|
21 |
from functools import lru_cache
|
|
|
22 |
import re
|
23 |
import io
|
24 |
import json
|
|
|
26 |
from groq import Groq
|
27 |
|
28 |
# Model and Processor Loading (Done once at startup)
|
29 |
+
MODEL_ID = "Qwen/Qwen2-VL-7B-Instruct"
|
30 |
model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16).to("cuda").eval()
|
31 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
32 |
|
33 |
GROQ_API_KEY = os.environ.get("GROQ_API_KEY", None)
|
34 |
|
35 |
client_groq = Groq(api_key=GROQ_API_KEY)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
|
38 |
# Path to example images
|
|
|
88 |
],
|
89 |
[
|
90 |
{
|
91 |
+
"text": "Who are they? Tell me about both of them.",
|
92 |
"files": [f"{examples_path}/example_images/elon_smoking.jpg",
|
93 |
f"{examples_path}/example_images/steve_jobs.jpg", ]
|
94 |
}
|
|
|
312 |
image = image_gen(f"{str(query)}")
|
313 |
yield gr.Image(image[1])
|
314 |
except:
|
315 |
+
client_flux = InferenceClient("black-forest-labs/FLUX.1-schnell")
|
316 |
seed = random.randint(0,999999)
|
317 |
+
image = client_flux.text_to_image(query, negative_prompt=f"{seed}")
|
318 |
yield gr.Image(image)
|
319 |
|
320 |
|