Spaces:
Running
on
Zero
Running
on
Zero
Update voice_chat.py
Browse files- voice_chat.py +49 -51
voice_chat.py
CHANGED
@@ -1,31 +1,25 @@
|
|
1 |
-
import
|
|
|
2 |
import asyncio
|
3 |
import tempfile
|
4 |
-
import
|
5 |
-
|
6 |
-
import
|
7 |
-
from streaming_stt_nemo import Model as nemo
|
8 |
-
import gradio as gr
|
9 |
-
from transformers import pipeline
|
10 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
-
from transformers import AutoModel
|
12 |
-
from huggingface_hub import InferenceClient
|
13 |
import torch
|
|
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
engines = {default_lang: nemo(default_lang)}
|
19 |
|
20 |
-
#
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
#
|
24 |
-
def transcribe(audio):
|
25 |
-
lang = "en"
|
26 |
-
model = engines[lang]
|
27 |
-
text = model.stt_file(audio)[0]
|
28 |
-
return text
|
29 |
|
30 |
# Get Hugging Face API token
|
31 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
@@ -46,41 +40,45 @@ def client_fn(model):
|
|
46 |
else:
|
47 |
return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
48 |
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
seed = random.randint(0, 999999)
|
53 |
-
return seed
|
54 |
|
55 |
-
|
56 |
-
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
|
68 |
-
stream =
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
for response in stream:
|
73 |
-
if not response.token.text == "</s>":
|
74 |
-
output += response.token.text
|
75 |
-
return output
|
76 |
-
|
77 |
-
# Define an asynchronous function to handle voice input and generate responses
|
78 |
-
async def respond(audio, model, seed):
|
79 |
user = transcribe(audio)
|
80 |
-
reply =
|
81 |
communicate = edge_tts.Communicate(reply)
|
82 |
-
# Save the generated speech to a temporary file
|
83 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
84 |
tmp_path = tmp_file.name
|
85 |
await communicate.save(tmp_path)
|
86 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import edge_tts
|
3 |
import asyncio
|
4 |
import tempfile
|
5 |
+
import numpy as np
|
6 |
+
import soxr
|
7 |
+
from pydub import AudioSegment
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import torch
|
9 |
+
import sentencepiece as spm
|
10 |
+
import onnxruntime as ort
|
11 |
+
from huggingface_hub import hf_hub_download, InferenceClient
|
12 |
|
13 |
+
# Speech Recognition Model Configuration
|
14 |
+
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
|
15 |
+
sample_rate = 16000
|
|
|
16 |
|
17 |
+
# Download preprocessor, encoder and tokenizer
|
18 |
+
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
|
19 |
+
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
|
20 |
+
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
|
21 |
|
22 |
+
# Model Configuration
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Get Hugging Face API token
|
25 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
40 |
else:
|
41 |
return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
42 |
|
43 |
+
system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
|
44 |
|
45 |
+
def resample(audio_fp32, sr):
|
46 |
+
return soxr.resample(audio_fp32, sr, sample_rate)
|
|
|
|
|
47 |
|
48 |
+
def to_float32(audio_buffer):
|
49 |
+
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
|
50 |
|
51 |
+
def transcribe(audio_path):
|
52 |
+
audio_file = AudioSegment.from_file(audio_path)
|
53 |
+
sr = audio_file.frame_rate
|
54 |
+
audio_buffer = np.array(audio_file.get_array_of_samples())
|
55 |
+
|
56 |
+
audio_fp32 = to_float32(audio_buffer)
|
57 |
+
audio_16k = resample(audio_fp32, sr)
|
58 |
+
|
59 |
+
input_signal = torch.tensor(audio_16k).unsqueeze(0)
|
60 |
+
length = torch.tensor(len(audio_16k)).unsqueeze(0)
|
61 |
+
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
|
62 |
+
|
63 |
+
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
|
64 |
+
|
65 |
+
blank_id = tokenizer.vocab_size()
|
66 |
+
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
|
67 |
+
text = tokenizer.decode_ids(decoded_prediction)
|
68 |
+
|
69 |
+
return text
|
70 |
+
|
71 |
+
def model(text, model="Mixtral 8x7B"):
|
72 |
+
client1 = client_fn(model)
|
73 |
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
|
74 |
+
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
|
75 |
+
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
|
76 |
+
|
77 |
+
async def respond(audio, model):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
user = transcribe(audio)
|
79 |
+
reply = model(user, model)
|
80 |
communicate = edge_tts.Communicate(reply)
|
|
|
81 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
82 |
tmp_path = tmp_file.name
|
83 |
await communicate.save(tmp_path)
|
84 |
+
return tmp_path
|