File size: 2,213 Bytes
ceef143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# -*- coding: utf-8 -*-
"""sentiement_analysis.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1uCHkA4O7IFjR173CabfByPvjfbiz6wY7
"""

!pip install diffusers transformers torch numpy scipy gradio datasets

!pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio===0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax
import gradio as gr
torch.cuda.is_available()

model_path = "cardiffnlp/twitter-roberta-base-sentiment-latest"

tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)

def sentiment_analysis(text):
    encoded_input = tokenizer(text, return_tensors='pt')
    output = model(**encoded_input)
    scores_ = output[0][0].detach().numpy()
    scores_ = softmax(scores_)
    labels = ['Negative', 'Neutral', 'Positive']
    scores = {l: float(s) for (l, s) in zip(labels, scores_)}
    return scores

demo = gr.Interface(
    theme=gr.themes.Base(),
    fn=sentiment_analysis,
    inputs=gr.Textbox(placeholder="Write your text here..."),
    outputs="label",
    examples=[
        ["I'm thrilled about the job offer!"],
        ["The weather today is absolutely beautiful."],
        ["I had a fantastic time at the concert last night."],
        ["I'm so frustrated with this software glitch."],
        ["The customer service was terrible at the store."],
        ["I'm really disappointed with the quality of this product."]
    ],
    title='Sentiment Analysis App',
    description='This app classifies a positive, neutral, or negative sentiment.'
)

demo.launch()

!ls
!git add app.py
!git commit -m "app.py"
#!git push
#!git push

from transformers import AutoModelForSequenceClassification, AutoTokenizer
from huggingface_hub import notebook_login

notebook_login()

model.push_to_hub("Kiro0o/bert-sentiment-analysis")
tokenizer.push_to_hub("Kiro0o/bert-sentiment-analysis")

!git clone https://huggingface.co/spaces/Kiro0o/Sentiment