Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,24 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
demo = gr.Interface(
|
4 |
theme=gr.themes.Base(),
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
3 |
+
import numpy as np
|
4 |
+
from scipy.special import softmax
|
5 |
import gradio as gr
|
6 |
+
torch.cuda.is_available()
|
7 |
+
|
8 |
+
model_path = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
11 |
+
config = AutoConfig.from_pretrained(model_path)
|
12 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
13 |
+
|
14 |
+
def sentiment_analysis(text):
|
15 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
16 |
+
output = model(**encoded_input)
|
17 |
+
scores_ = output[0][0].detach().numpy()
|
18 |
+
scores_ = softmax(scores_)
|
19 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
20 |
+
scores = {l: float(s) for (l, s) in zip(labels, scores_)}
|
21 |
+
return scores
|
22 |
|
23 |
demo = gr.Interface(
|
24 |
theme=gr.themes.Base(),
|