Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
class AbstractDistribution: | |
def sample(self): | |
raise NotImplementedError() | |
def mode(self): | |
raise NotImplementedError() | |
class DiracDistribution(AbstractDistribution): | |
def __init__(self, value): | |
self.value = value | |
def sample(self): | |
return self.value | |
def mode(self): | |
return self.value | |
class DiagonalGaussianDistribution(object): | |
def __init__(self, parameters, deterministic=False): | |
self.parameters = parameters | |
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) | |
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) | |
self.deterministic = deterministic | |
self.std = torch.exp(0.5 * self.logvar) | |
self.var = torch.exp(self.logvar) | |
if self.deterministic: | |
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) | |
def sample(self): | |
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) | |
return x | |
def kl(self, other=None): | |
if self.deterministic: | |
return torch.Tensor([0.]) | |
else: | |
if other is None: | |
return 0.5 * torch.sum(torch.pow(self.mean, 2) | |
+ self.var - 1.0 - self.logvar, | |
dim=[1, 2, 3]) | |
else: | |
return 0.5 * torch.sum( | |
torch.pow(self.mean - other.mean, 2) / other.var | |
+ self.var / other.var - 1.0 - self.logvar + other.logvar, | |
dim=[1, 2, 3]) | |
def nll(self, sample, dims=[1,2,3]): | |
if self.deterministic: | |
return torch.Tensor([0.]) | |
logtwopi = np.log(2.0 * np.pi) | |
return 0.5 * torch.sum( | |
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, | |
dim=dims) | |
def mode(self): | |
return self.mean | |
def normal_kl(mean1, logvar1, mean2, logvar2): | |
""" | |
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 | |
Compute the KL divergence between two gaussians. | |
Shapes are automatically broadcasted, so batches can be compared to | |
scalars, among other use cases. | |
""" | |
tensor = None | |
for obj in (mean1, logvar1, mean2, logvar2): | |
if isinstance(obj, torch.Tensor): | |
tensor = obj | |
break | |
assert tensor is not None, "at least one argument must be a Tensor" | |
# Force variances to be Tensors. Broadcasting helps convert scalars to | |
# Tensors, but it does not work for torch.exp(). | |
logvar1, logvar2 = [ | |
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) | |
for x in (logvar1, logvar2) | |
] | |
return 0.5 * ( | |
-1.0 | |
+ logvar2 | |
- logvar1 | |
+ torch.exp(logvar1 - logvar2) | |
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2) | |
) | |