Spaces:
Running
on
Zero
Running
on
Zero
""" CLIP Model | |
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. | |
""" | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from .transformer import LayerNormFp32, LayerNorm, QuickGELU, VisionTransformer, TextTransformer | |
class CLIPVisionCfg: | |
layers: Union[Tuple[int, int, int, int], int] = 12 | |
width: int = 768 | |
head_width: int = 64 | |
mlp_ratio: float = 4.0 | |
patch_size: int = 16 | |
image_size: Union[Tuple[int, int], int] = 224 | |
ls_init_value: Optional[float] = None # layer scale initial value | |
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results | |
input_patchnorm: bool = False # whether to use dual patchnorm - would only apply the input layernorm on each patch, as post-layernorm already exist in original clip vit design | |
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580) | |
attentional_pool: bool = False # whether to use attentional pooler in the last embedding layer | |
n_queries: int = 256 # n_queries for attentional pooler | |
attn_pooler_heads: int = 8 # n heads for attentional_pooling | |
output_tokens: bool = False | |
timm_model_name: str = None # a valid model name overrides layers, width, patch_size | |
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model | |
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '') | |
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '') | |
timm_proj_bias: bool = False # enable bias final projection | |
timm_drop: float = 0. # head dropout | |
timm_drop_path: Optional[float] = None # backbone stochastic depth | |
class CLIPTextCfg: | |
context_length: int = 77 | |
vocab_size: int = 49408 | |
width: int = 512 | |
heads: int = 8 | |
layers: int = 12 | |
ls_init_value: Optional[float] = None # layer scale initial value | |
hf_model_name: str = None | |
hf_tokenizer_name: str = None | |
hf_model_pretrained: bool = True | |
proj: str = 'mlp' | |
pooler_type: str = 'mean_pooler' | |
embed_cls: bool = False | |
pad_id: int = 0 | |
output_tokens: bool = False | |
def get_cast_dtype(precision: str): | |
cast_dtype = None | |
if precision == 'bf16': | |
cast_dtype = torch.bfloat16 | |
elif precision == 'fp16': | |
cast_dtype = torch.float16 | |
return cast_dtype | |
def _build_vision_tower( | |
embed_dim: int, | |
vision_cfg: CLIPVisionCfg, | |
quick_gelu: bool = False, | |
cast_dtype: Optional[torch.dtype] = None | |
): | |
if isinstance(vision_cfg, dict): | |
vision_cfg = CLIPVisionCfg(**vision_cfg) | |
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more | |
# memory efficient in recent PyTorch releases (>= 1.10). | |
# NOTE: timm models always use native GELU regardless of quick_gelu flag. | |
act_layer = QuickGELU if quick_gelu else nn.GELU | |
vision_heads = vision_cfg.width // vision_cfg.head_width | |
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm | |
visual = VisionTransformer( | |
image_size=vision_cfg.image_size, | |
patch_size=vision_cfg.patch_size, | |
width=vision_cfg.width, | |
layers=vision_cfg.layers, | |
heads=vision_heads, | |
mlp_ratio=vision_cfg.mlp_ratio, | |
ls_init_value=vision_cfg.ls_init_value, | |
patch_dropout=vision_cfg.patch_dropout, | |
input_patchnorm=vision_cfg.input_patchnorm, | |
global_average_pool=vision_cfg.global_average_pool, | |
attentional_pool=vision_cfg.attentional_pool, | |
n_queries=vision_cfg.n_queries, | |
attn_pooler_heads=vision_cfg.attn_pooler_heads, | |
output_tokens=vision_cfg.output_tokens, | |
output_dim=embed_dim, | |
act_layer=act_layer, | |
norm_layer=norm_layer, | |
) | |
return visual | |
def _build_text_tower( | |
embed_dim: int, | |
text_cfg: CLIPTextCfg, | |
quick_gelu: bool = False, | |
cast_dtype: Optional[torch.dtype] = None, | |
): | |
if isinstance(text_cfg, dict): | |
text_cfg = CLIPTextCfg(**text_cfg) | |
act_layer = QuickGELU if quick_gelu else nn.GELU | |
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm | |
text = TextTransformer( | |
context_length=text_cfg.context_length, | |
vocab_size=text_cfg.vocab_size, | |
width=text_cfg.width, | |
heads=text_cfg.heads, | |
layers=text_cfg.layers, | |
ls_init_value=text_cfg.ls_init_value, | |
output_dim=embed_dim, | |
embed_cls=text_cfg.embed_cls, | |
output_tokens=text_cfg.output_tokens, | |
pad_id=text_cfg.pad_id, | |
act_layer=act_layer, | |
norm_layer=norm_layer, | |
) | |
return text | |
class CLIP(nn.Module): | |
output_dict: torch.jit.Final[bool] | |
def __init__( | |
self, | |
embed_dim: int, | |
vision_cfg: CLIPVisionCfg, | |
text_cfg: CLIPTextCfg, | |
quick_gelu: bool = False, | |
cast_dtype: Optional[torch.dtype] = None, | |
output_dict: bool = False, | |
): | |
super().__init__() | |
self.output_dict = output_dict | |
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) | |
text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) | |
self.transformer = text.transformer | |
self.context_length = text.context_length | |
self.vocab_size = text.vocab_size | |
self.token_embedding = text.token_embedding | |
self.positional_embedding = text.positional_embedding | |
self.ln_final = text.ln_final | |
self.text_projection = text.text_projection | |
self.register_buffer('attn_mask', text.attn_mask, persistent=False) | |
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): | |
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991 | |
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) | |
def set_grad_checkpointing(self, enable=True): | |
self.visual.set_grad_checkpointing(enable) | |
self.transformer.grad_checkpointing = enable | |
def encode_image(self, image, normalize: bool = False): | |
features = self.visual(image) | |
return F.normalize(features, dim=-1) if normalize else features | |
def encode_text(self, text, normalize: bool = False): | |
cast_dtype = self.transformer.get_cast_dtype() | |
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] | |
x = x + self.positional_embedding.to(cast_dtype) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x, attn_mask=self.attn_mask) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width] | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection | |
return F.normalize(x, dim=-1) if normalize else x | |
def forward( | |
self, | |
image: Optional[torch.Tensor] = None, | |
text: Optional[torch.Tensor] = None, | |
): | |
image_features = self.encode_image(image, normalize=True) if image is not None else None | |
text_features = self.encode_text(text, normalize=True) if text is not None else None | |
if self.output_dict: | |
return { | |
"image_features": image_features, | |
"text_features": text_features, | |
"logit_scale": self.logit_scale.exp() | |
} | |
return image_features, text_features, self.logit_scale.exp() | |