Spaces:
Sleeping
Sleeping
File size: 3,896 Bytes
b4ceb72 0c80716 b4ceb72 7613467 c3599b6 b4ceb72 85bca36 7613467 c3599b6 b4ceb72 85bca36 23a30f1 85bca36 23a30f1 7613467 c3599b6 dea4866 b4ceb72 c3599b6 b4ceb72 7613467 c3599b6 b4ceb72 c3599b6 b4ceb72 c3599b6 b4ceb72 c3599b6 b4ceb72 c3599b6 b4ceb72 c3599b6 b4ceb72 c3599b6 b4ceb72 c3599b6 b4ceb72 c3599b6 b4ceb72 d99d01c dc0224a 7613467 b4ceb72 c3599b6 b4ceb72 29f9dea c3599b6 29f9dea c3599b6 29f9dea e672180 29f9dea c3599b6 dc0224a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import os
import gradio as gr
from huggingface_hub import login
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer
from peft import PeftModel, PeftConfig
# Hugging Face login
token = os.environ.get("token")
if token:
login(token)
print("Login is successful")
else:
print("Token not found. Please set your token in the environment variables.")
# Model and tokenizer setup
MODEL_NAME = "google/flan-t5-base"
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, use_auth_token=token)
config = PeftConfig.from_pretrained("Komal-patra/results")
base_model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
model = PeftModel.from_pretrained(base_model, "Komal-patra/results")
# Text generation function
def generate_text(prompt, max_length=150):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
input_ids=inputs["input_ids"],
max_length=max_length,
num_beams=1,
repetition_penalty=2.2
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
# Custom CSS for the UI
custom_css = """
.message.pending {
background: #A8C4D6;
}
/* Response message */
.message.bot.svelte-1s78gfg.message-bubble-border {
border-color: #266B99;
}
/* User message */
.message.user.svelte-1s78gfg.message-bubble-border {
background: #9DDDF9;
border-color: #9DDDF9;
}
/* For both user and response message as per the document */
span.md.svelte-8tpqd2.chatbot.prose p {
color: #266B99;
}
/* Chatbot container */
.gradio-container {
background: #1c1c1c; /* Dark background */
color: white; /* Light text color */
}
/* RED (Hex: #DB1616) for action buttons and links only */
.clear-btn {
background: #DB1616;
color: white;
}
/* Primary colors are set to be used for all sorts */
.submit-btn {
background: #266B99;
color: white;
}
/* Add icons to messages */
.message.user.svelte-1s78gfg {
display: flex;
align-items: center;
}
.message.user.svelte-1s78gfg:before {
content: url('file=Komal-patra/EU_AI_ACT/user icon.jpeg');
margin-right: 8px;
}
.message.bot.svelte-1s78gfg {
display: flex;
align-items: center;
}
.message.bot.svelte-1s78gfg:before {
content: url('file=Komal-patra/EU_AI_ACT/orcawise image.png');
margin-right: 8px;
}
/* Enable scrolling for the chatbot messages */
.chatbot .messages {
max-height: 500px; /* Adjust as needed */
overflow-y: auto;
}
"""
# Gradio interface setup
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("<h1>Ask a question about the EU AI Act</h1>")
chatbot = gr.Chatbot()
msg = gr.Textbox(placeholder="Ask your question...", show_label=False) # Add placeholder text
submit_button = gr.Button("Submit", elem_classes="submit-btn")
clear = gr.Button("Clear", elem_classes="clear-btn")
# Function to handle user input
def user(user_message, history):
return "", history + [[user_message, None]]
# Function to handle bot response
def bot(history):
if len(history) == 1: # Check if it's the first interaction
bot_message = "Hi there! How can I help you today?"
history[-1][1] = bot_message # Add welcome message to history
else:
history[-1][1] = "" # Clear the last bot message
previous_message = history[-1][0] # Access the previous user message
bot_message = generate_text(previous_message) # Generate response based on previous message
history[-1][1] = bot_message # Update the last bot message
return history
submit_button.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()
|