File size: 6,315 Bytes
b4ceb72
0c80716
b4ceb72
 
 
7613467
c3599b6
b4ceb72
 
c3599b6
7613467
c3599b6
b4ceb72
 
23a30f1
b4ceb72
23a30f1
7613467
c3599b6
dea4866
b4ceb72
 
c3599b6
 
 
 
 
b4ceb72
 
7613467
c3599b6
 
b4ceb72
 
 
 
 
c3599b6
83f6fda
 
 
 
aeac2da
83f6fda
b4ceb72
 
c3599b6
b4ceb72
c3599b6
83f6fda
 
 
 
 
 
b4ceb72
 
 
c3599b6
b4ceb72
c3599b6
 
 
 
b4ceb72
 
 
c3599b6
 
b4ceb72
c3599b6
b4ceb72
c3599b6
 
b4ceb72
7613467
b4ceb72
c3599b6
b4ceb72
c3599b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
import gradio as gr
from huggingface_hub import login
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer
from peft import PeftModel, PeftConfig

# Hugging Face login
token = os.environ.get("token")
login(token)
print("Login is successful")

# Model and tokenizer setup
MODEL_NAME = "google/flan-t5-base"
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, token=token)
config = PeftConfig.from_pretrained("Komal-patra/results")
base_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
model = PeftModel.from_pretrained(base_model, "Komal-patra/results")

# Text generation function
def generate_text(prompt, max_length=150):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(
        input_ids=inputs["input_ids"],
        max_length=max_length,
        num_beams=1,
        repetition_penalty=2.2
    )
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return generated_text

# Custom CSS for the UI
custom_css = """
.message.pending {
    background: #A8C4D6;
}
/* Response message */
.message.bot.svelte-1s78gfg.message-bubble-border {
    border-color: #266B99;
    display: flex;
    align-items: center;
}
.message.bot.svelte-1s78gfg.message-bubble-border::before {
    content: url('');
    margin-right: 10px;
}
/* User message */
.message.user.svelte-1s78gfg.message-bubble-border {
    background: #9DDDF9;
    border-color: #9DDDF9;
    display: flex;
    align-items: center;
}
.message.user.svelte-1s78gfg.message-bubble-border::before {
    content: url('https://path_to_user_icon.png');
    margin-right: 10px;
}   
/* For both user and response message as per the document */
span.md.svelte-8tpqd2.chatbot.prose p {
    color: #266B99;
}
/* Chatbot container */
.gradio-container {
    background: #1c1c1c; /* Dark background */
    color: white; /* Light text color */
}
/* RED (Hex: #DB1616) for action buttons and links only */
.clear-btn {
    background: #DB1616;
    color: white;
}
/* Primary colors are set to be used for all sorts */
.submit-btn {
    background: #266B99;
    color: white;
}
"""

# Gradio interface setup
with gr.Blocks(css=custom_css) as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("<h2>My chats</h2>")
            chat_topics = gr.Markdown("<!-- Dynamic content -->")

        with gr.Column(scale=3):
            gr.Markdown("<h1>Ask a question about the EU AI Act</h1>")
            chatbot = gr.Chatbot()
            msg = gr.Textbox(placeholder="Ask your question...", show_label=False)  # Add placeholder text
            submit_button = gr.Button("Submit", elem_classes="submit-btn")
            clear = gr.Button("Clear", elem_classes="clear-btn")

            def user(user_message, history):
                return "", history + [[user_message, None]]

            def bot(history):
                if len(history) == 1:  # Check if it's the first interaction
                    bot_message = "Hi there! How can I help you today?"
                    history[-1][1] = bot_message  # Add welcome message to history
                else:
                    history[-1][1] = ""  # Clear the last bot message
                    previous_message = history[-1][0]  # Access the previous user message
                    bot_message = generate_text(previous_message)  # Generate response based on previous message
                    history[-1][1] = bot_message  # Update the last bot message
                return history

            submit_button.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
                bot, chatbot, chatbot
            )
            msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
                bot, chatbot, chatbot
            )
            clear.click(lambda: None, None, chatbot, queue=False)

demo.launch()