Spaces:
Sleeping
Sleeping
File size: 6,315 Bytes
b4ceb72 0c80716 b4ceb72 7613467 c3599b6 b4ceb72 c3599b6 7613467 c3599b6 b4ceb72 23a30f1 b4ceb72 23a30f1 7613467 c3599b6 dea4866 b4ceb72 c3599b6 b4ceb72 7613467 c3599b6 b4ceb72 c3599b6 83f6fda aeac2da 83f6fda b4ceb72 c3599b6 b4ceb72 c3599b6 83f6fda b4ceb72 c3599b6 b4ceb72 c3599b6 b4ceb72 c3599b6 b4ceb72 c3599b6 b4ceb72 c3599b6 b4ceb72 7613467 b4ceb72 c3599b6 b4ceb72 c3599b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import os
import gradio as gr
from huggingface_hub import login
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer
from peft import PeftModel, PeftConfig
# Hugging Face login
token = os.environ.get("token")
login(token)
print("Login is successful")
# Model and tokenizer setup
MODEL_NAME = "google/flan-t5-base"
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, token=token)
config = PeftConfig.from_pretrained("Komal-patra/results")
base_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
model = PeftModel.from_pretrained(base_model, "Komal-patra/results")
# Text generation function
def generate_text(prompt, max_length=150):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
input_ids=inputs["input_ids"],
max_length=max_length,
num_beams=1,
repetition_penalty=2.2
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
# Custom CSS for the UI
custom_css = """
.message.pending {
background: #A8C4D6;
}
/* Response message */
.message.bot.svelte-1s78gfg.message-bubble-border {
border-color: #266B99;
display: flex;
align-items: center;
}
.message.bot.svelte-1s78gfg.message-bubble-border::before {
content: url('');
margin-right: 10px;
}
/* User message */
.message.user.svelte-1s78gfg.message-bubble-border {
background: #9DDDF9;
border-color: #9DDDF9;
display: flex;
align-items: center;
}
.message.user.svelte-1s78gfg.message-bubble-border::before {
content: url('https://path_to_user_icon.png');
margin-right: 10px;
}
/* For both user and response message as per the document */
span.md.svelte-8tpqd2.chatbot.prose p {
color: #266B99;
}
/* Chatbot container */
.gradio-container {
background: #1c1c1c; /* Dark background */
color: white; /* Light text color */
}
/* RED (Hex: #DB1616) for action buttons and links only */
.clear-btn {
background: #DB1616;
color: white;
}
/* Primary colors are set to be used for all sorts */
.submit-btn {
background: #266B99;
color: white;
}
"""
# Gradio interface setup
with gr.Blocks(css=custom_css) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("<h2>My chats</h2>")
chat_topics = gr.Markdown("<!-- Dynamic content -->")
with gr.Column(scale=3):
gr.Markdown("<h1>Ask a question about the EU AI Act</h1>")
chatbot = gr.Chatbot()
msg = gr.Textbox(placeholder="Ask your question...", show_label=False) # Add placeholder text
submit_button = gr.Button("Submit", elem_classes="submit-btn")
clear = gr.Button("Clear", elem_classes="clear-btn")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
if len(history) == 1: # Check if it's the first interaction
bot_message = "Hi there! How can I help you today?"
history[-1][1] = bot_message # Add welcome message to history
else:
history[-1][1] = "" # Clear the last bot message
previous_message = history[-1][0] # Access the previous user message
bot_message = generate_text(previous_message) # Generate response based on previous message
history[-1][1] = bot_message # Update the last bot message
return history
submit_button.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()
|