Spaces:
Sleeping
Sleeping
File size: 4,224 Bytes
b4ceb72 0c80716 b4ceb72 7613467 c3599b6 b4ceb72 b0e417e 7613467 c3599b6 b4ceb72 85bca36 23a30f1 85bca36 23a30f1 7613467 c3599b6 b0e417e b4ceb72 c3599b6 b4ceb72 7613467 c3599b6 8bf2568 0305332 b0e417e 0305332 b0e417e 0305332 b0e417e 0305332 b0e417e 0305332 b0e417e 0305332 b4ceb72 0305332 c3599b6 0305332 b0e417e b4ceb72 0305332 c3599b6 0305332 c3599b6 0305332 c3599b6 0305332 d99d01c 0305332 d99d01c 0305332 d99d01c 0305332 d99d01c 0305332 d99d01c 0305332 dc0224a bd5560a dc0224a 0305332 7613467 b4ceb72 c3599b6 b4ceb72 b0e417e 29f9dea b0e417e 29f9dea c3599b6 b0e417e 29f9dea bd5560a c3599b6 b0e417e bd5560a b0e417e bd5560a b0e417e bd5560a b0e417e bd5560a e672180 bd5560a c3599b6 bd4819a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import os
import gradio as gr
from huggingface_hub import login
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer
from peft import PeftModel, PeftConfig
# Hugging Face login
token = os.environ.get("token")
login(token)
print("login is succesful")
max_length=512
# Model and tokenizer setup
MODEL_NAME = "google/flan-t5-base"
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, use_auth_token=token)
config = PeftConfig.from_pretrained("Komal-patra/results")
base_model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
model = PeftModel.from_pretrained(base_model, "Komal-patra/results")
# Text generation function
def generate_text(prompt, max_length=512):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
input_ids=inputs["input_ids"],
max_length=max_length,
num_beams=1,
repetition_penalty=2.2
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
# Custom CSS for the UI
background_image_path = 'https://www.shlegal-technology.com/sites/default/files/insight/ExploringTheLegislativeBackgroundBANNER.jpg'
custom_css = f"""
.message.pending {{
background: #A8C4D6;
}}
/* Response message */
.message.bot.svelte-1s78gfg.message-bubble-border {{
border-color: #266B99;
}}
/* User message */
.message.user.svelte-1s78gfg.message-bubble-border {{
background: #9DDDF9;
border-color: #9DDDF9;
}}
/* For both user and response message as per the document */
span.md.svelte-8tpqd2.chatbot.prose p {{
color: #266B99;
}}
/* Chatbot container */
.gradio-container {{
background: #1c1c1c; /* Dark background */
color: white; /* Light text color */
background-image: url('{background_image_path}'); /* Add background image */
background-size: cover; /* Cover the entire container */
background-position: center; /* Center the image */
background-repeat: no-repeat; /* Do not repeat the image */
}}
/* RED (Hex: #DB1616) for action buttons and links only */
.clear-btn {{
background: #DB1616;
color: white;
}}
/* Primary colors are set to be used for all sorts */
.submit-btn {{
background: #266B99;
color: white;
}}
/* Add icons to messages */
.message.user.svelte-1s78gfg {{
display: flex;
align-items: center;
}}
.message.user.svelte-1s78gfg:before {{
content: url('file=Komal-patra/EU_AI_ACT/user icon.jpeg');
margin-right: 8px;
}}
.message.bot.svelte-1s78gfg {{
display: flex;
align-items: center;
}}
.message.bot.svelte-1s78gfg:before {{
content: url('file=Komal-patra/EU_AI_ACT/orcawise image.png');
margin-right: 8px;
}}
/* Enable scrolling for the chatbot messages */
.chatbot .messages {{
max-height: 500px; /* Adjust as needed */
overflow-y: auto;
}}
"""
# Gradio interface setup
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("<h1>Ask a question about the EU AI Act</h1>")
chatbot = gr.Chatbot()
msg = gr.Textbox(placeholder="Ask your question...", show_label=False) # Add placeholder text
submit_button = gr.Button("Submit", elem_classes="submit-btn")
clear = gr.Button("Clear", elem_classes="clear-btn")
# Function to handle user input
def user(user_message, history):
return "", history + [[user_message, None]]
# Function to handle bot response
def bot(history):
if len(history) == 1: # Check if it's the first interaction
bot_message = "Hi there! How can I help you today?"
history[-1][1] = bot_message # Add welcome message to history
else:
history[-1][1] = "" # Clear the last bot message
previous_message = history[-1][0] # Access the previous user message
bot_message = generate_text(previous_message) # Generate response based on previous message
history[-1][1] = bot_message # Update the last bot message
return history
submit_button.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()
|