import os import gradio as gr from huggingface_hub import login from transformers import AutoModelForSeq2SeqLM, T5Tokenizer from peft import PeftModel, PeftConfig # Hugging Face login token = os.environ.get("token") login(token) print("Login is successful") # Model and tokenizer setup MODEL_NAME = "google/flan-t5-base" tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, token=token) config = PeftConfig.from_pretrained("Komal-patra/results") base_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base") model = PeftModel.from_pretrained(base_model, "Komal-patra/results") # Text generation function def generate_text(prompt, max_length=150): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( input_ids=inputs["input_ids"], max_length=max_length, num_beams=1, repetition_penalty=2.2 ) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text # Custom CSS for the UI custom_css = """ .message.pending { background: #A8C4D6; } /* Response message */ .message.bot.svelte-1s78gfg.message-bubble-border { border-color: #266B99; } /* User message */ .message.user.svelte-1s78gfg.message-bubble-border { background: #9DDDF9; border-color: #9DDDF9; } /* For both user and response message as per the document */ span.md.svelte-8tpqd2.chatbot.prose p { color: #266B99; } /* Chatbot container */ .gradio-container { background: #1c1c1c; /* Dark background */ color: white; /* Light text color */ } /* RED (Hex: #DB1616) for action buttons and links only */ .clear-btn { background: #DB1616; color: white; } /* Primary colors are set to be used for all sorts */ .submit-btn { background: #266B99; color: white; } """ # Gradio interface setup with gr.Blocks(css=custom_css) as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown("