Spaces:
Sleeping
Sleeping
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.llms import OpenAI | |
from langchain.chat_models import ChatOpenAI | |
class openai_chain(): | |
def __init__(self, inp_dir='output_reports/reports_1/faiss_index') -> None: | |
self.inp_dir = inp_dir | |
pass | |
def get_response(self, query, k=3, type="map_reduce", model_name="gpt-3.5-turbo"): | |
# Initialize OPENAI embeddings | |
embedding = OpenAIEmbeddings() | |
# Load Database for required PDF | |
db = FAISS.load_local(self.inp_dir, embedding) | |
# Get relevant docs | |
docs = db.similarity_search(query, k=k) | |
# Create Chain | |
chain = load_qa_chain(ChatOpenAI(model=model_name), chain_type=type) | |
# Get Response | |
response = chain.run(input_documents=docs, question=query) | |
return response | |
def get_response_from_drive(self, query, database, k=3, type="stuff", model_name="gpt-3.5-turbo"): | |
# Get relevant docs | |
docs = database.similarity_search(query, k=k) | |
# Create chain | |
chain = load_qa_chain(ChatOpenAI(model=model_name), chain_type=type) | |
#Get Response | |
response = chain.run(input_documents=docs, question=query) | |
return response |