from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI class openai_chain(): def __init__(self, inp_dir='output_reports/reports_1/faiss_index') -> None: self.inp_dir = inp_dir pass def get_response(self, query, k=3, type="map_reduce", model_name="gpt-3.5-turbo"): # Initialize OPENAI embeddings embedding = OpenAIEmbeddings() # Load Database for required PDF db = FAISS.load_local(self.inp_dir, embedding) # Get relevant docs docs = db.similarity_search(query, k=k) # Create Chain chain = load_qa_chain(ChatOpenAI(model=model_name), chain_type=type) # Get Response response = chain.run(input_documents=docs, question=query) return response def get_response_from_drive(self, query, database, k=3, type="stuff", model_name="gpt-3.5-turbo"): # Get relevant docs docs = database.similarity_search(query, k=k) # Create chain chain = load_qa_chain(ChatOpenAI(model=model_name), chain_type=type) #Get Response response = chain.run(input_documents=docs, question=query) return response