File size: 5,174 Bytes
35378f6
 
923aff9
 
35378f6
18d5ac3
 
923aff9
35378f6
 
18d5ac3
923aff9
 
18d5ac3
923aff9
 
 
 
18d5ac3
923aff9
 
 
 
 
 
 
 
 
 
 
 
 
 
d9fe49a
923aff9
d515b04
923aff9
 
 
 
 
 
 
 
d9fe49a
 
 
 
 
923aff9
 
 
d515b04
 
 
 
 
35378f6
d515b04
 
d9fe49a
 
 
 
 
d515b04
 
 
 
 
d9fe49a
d515b04
 
 
 
 
 
d9fe49a
 
 
 
 
d515b04
923aff9
 
d9fe49a
 
923aff9
 
35378f6
18d5ac3
35378f6
18d5ac3
923aff9
 
 
35378f6
923aff9
35378f6
 
923aff9
35378f6
 
18d5ac3
35378f6
923aff9
 
 
 
 
 
 
35378f6
 
923aff9
 
 
 
 
 
 
 
 
35378f6
 
18d5ac3
923aff9
18d5ac3
923aff9
 
35378f6
923aff9
 
 
 
18d5ac3
923aff9
35378f6
 
923aff9
 
 
 
 
18d5ac3
d515b04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import pandas as pd
import requests
import json
from io import StringIO
from datetime import datetime

from src.assets.text_content import REPO

def get_github_data():
    """
    Read and process data from CSV files hosted on GitHub. - https://github.com/clembench/clembench-runs

    Returns:
        github_data (dict): Dictionary containing:
            - "text": List of DataFrames for each version's textual leaderboard data.
            - "multimodal": List of DataFrames for each version's multimodal leaderboard data.
            - "date": Formatted date of the latest version in "DD Month YYYY" format.
    """
    base_repo = REPO
    json_url = base_repo + "benchmark_runs.json"
    response = requests.get(json_url)

    # Check if the JSON file request was successful
    if response.status_code != 200:
        print(f"Failed to read JSON file: Status Code: {response.status_code}")
        return None, None, None, None

    json_data = response.json()
    versions = json_data['versions']

    version_names = sorted(
        [ver['version'] for ver in versions],
        key=lambda v: list(map(int, v[1:].split('_')[0].split('.'))),  
        reverse=True
    )   

    # Get Leaderboard data - for text-only + multimodal
    github_data = {}

    # Collect Dataframes
    text_dfs = []
    mm_dfs = []

    text_flag = True
    text_date = ""
    mm_flag = True
    mm_date = ""

    for version in version_names:
        # Collect CSV data in descending order of clembench-runs versions
        # Collect Text-only data
        if len(version.split('_')) == 1: 
            text_url = f"{base_repo}{version}/results.csv"
            csv_response = requests.get(text_url)
            if csv_response.status_code == 200:
                df = pd.read_csv(StringIO(csv_response.text))
                df = process_df(df)
                df = df.sort_values(by=df.columns[1], ascending=False)  # Sort by clemscore column
                text_dfs.append(df)
                if text_flag:
                    text_flag = False
                    text_date = next(ver['date'] for ver in versions if ver['version'] == version)
                    text_date = datetime.strptime(text_date, "%Y-%m-%d").strftime("%d %b %Y")  

            else:
                print(f"Failed to read Text-only leaderboard CSV file for version: {version}. Status Code: {csv_response.status_code}")

        # Check if version ends with 'multimodal' before constructing the URL
        mm_suffix = "_multimodal" if not version.endswith('multimodal') else ""
        mm_url = f"{base_repo}{version}{mm_suffix}/results.csv" 
        mm_response = requests.get(mm_url)
        if mm_response.status_code == 200:
            df = pd.read_csv(StringIO(mm_response.text))
            df = process_df(df)
            df = df.sort_values(by=df.columns[1], ascending=False) # Sort by clemscore column
            mm_dfs.append(df)
            if mm_flag:
                mm_flag = False
                mm_date = next(ver['date'] for ver in versions if ver['version'] == version)
                mm_date = datetime.strptime(mm_date, "%Y-%m-%d").strftime("%d %b %Y")

      
    github_data["text"] = text_dfs
    github_data["multimodal"] = mm_dfs
    github_data["date"] = text_date
    github_data["mm_date"] = mm_date

    return github_data


def process_df(df: pd.DataFrame) -> pd.DataFrame:
    """
    Process dataframe:
    - Convert datatypes to sort by "float" instead of "str"
    - Remove repetition in model names
    - Update column names

    Args:
        df: Unprocessed Dataframe (after using update_cols)

    Returns:
        df: Processed Dataframe
    """

    # Convert column values to float, apart from the model names column
    for col in df.columns[1:]:
        df[col] = pd.to_numeric(df[col], errors='coerce')

    # Remove repetition in model names
    df[df.columns[0]] = df[df.columns[0]].str.replace('-t0.0', '', regex=True)
    df[df.columns[0]] = df[df.columns[0]].apply(lambda x: '--'.join(set(x.split('--'))))

    # Update column names
    custom_column_names = ['Model', 'Clemscore', '% Played', 'Quality Score']
    for i, col in enumerate(df.columns[4:]):  # Start Capitalizing from the 5th column
        parts = col.split(',')
        custom_name = f"{parts[0].strip().capitalize()} {parts[1].strip()}"
        custom_column_names.append(custom_name)

    # Rename columns
    df.columns = custom_column_names

    return df


def query_search(df: pd.DataFrame, query: str) -> pd.DataFrame:
    """
    Filter the dataframe based on the search query.

    Args:
        df (pd.DataFrame): Unfiltered dataframe.
        query (str): A string of queries separated by ";".
    Returns:
        pd.DataFrame: Filtered dataframe containing searched queries in the 'Model' column.
    """
    if not query.strip():  # Reset Dataframe if empty query is passed
        return df

    queries = [q.strip().lower() for q in query.split(';') if q.strip()]  # Normalize and split queries

    # Filter dataframe based on queries in 'Model' column
    filtered_df = df[df['Model'].str.lower().str.contains('|'.join(queries))]

    return filtered_df