Spaces:
Runtime error
Runtime error
File size: 4,821 Bytes
4d97309 badc551 4d97309 badc551 4d97309 badc551 4d97309 badc551 4d97309 badc551 4d97309 badc551 4d97309 badc551 4d97309 badc551 4d97309 badc551 4d97309 badc551 4d97309 badc551 4d97309 badc551 4d97309 badc551 4d97309 badc551 4d97309 badc551 4d97309 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
from src.assets.text_content import TITLE, INTRODUCTION_TEXT
from src.utils import compare_plots, filter_search, get_csv_data, split_models
############################ For Leaderboards #############################
# Get CSV data
global latest_df, all_dfs, all_vnames
latest_df, all_dfs, all_vnames = get_csv_data()
global prev_df
prev_df = all_dfs[0]
def select_prev_df(name):
ind = all_vnames.index(name)
prev_df = all_dfs[ind]
return prev_df
############################ For Plots ####################################
global plot_df, MODEL_COLS, OPEN_MODELS, COMM_MODELS
plot_df = latest_df[0]
MODEL_COLS = list(plot_df['Model'].unique())
OPEN_MODELS, COMM_MODELS = split_models(MODEL_COLS)
############# MAIN APPLICATION ######################
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π₯ CLEM Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for models - separate multiple queries with `;` and press ENTER...",
show_label=False,
elem_id="search-bar",
)
leaderboard_table = gr.components.Dataframe(
value=latest_df[0],
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Add a dummy leaderboard to handle search queries from the latest_df and not update latest_df
dummy_leaderboard_table = gr.components.Dataframe(
value=latest_df[0],
elem_id="leaderboard-table",
interactive=False,
visible=False,
)
search_bar.submit(
filter_search,
[dummy_leaderboard_table, search_bar],
leaderboard_table,
queue=True
)
with gr.TabItem("π Plot", id=3):
with gr.Row():
open_model_cols = gr.CheckboxGroup(
OPEN_MODELS,
label="Select Models - Open Weight π",
value=[],
elem_id="column-select",
interactive=True,
)
with gr.Row():
comm_model_cols = gr.CheckboxGroup(
COMM_MODELS,
label="Select Models - Closed Weight πΌ",
value=[],
elem_id="column-select-2",
interactive=True,
)
with gr.Row():
plot_grdf = gr.DataFrame(
value=plot_df,
visible=False
)
with gr.Row():
# Output block for the plot
plot_output = gr.Plot()
open_model_cols.change(
compare_plots,
[plot_grdf, open_model_cols, comm_model_cols],
plot_output,
queue=True
)
comm_model_cols.change(
compare_plots,
[plot_grdf, open_model_cols, comm_model_cols],
plot_output,
queue=True
)
with gr.TabItem("π Versions and Details", elem_id="details", id=2):
with gr.Row():
ver_selection = gr.Dropdown(
all_vnames, label="Select Version πΉοΈ", value=all_vnames[0]
)
with gr.Row():
search_bar_prev = gr.Textbox(
placeholder=" π Search for models - separate multiple queries with `;` and press ENTER...",
show_label=False,
elem_id="search-bar-2",
)
prev_table = gr.components.Dataframe(
value=prev_df,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
dummy_prev_table = gr.components.Dataframe(
value=prev_df,
elem_id="leaderboard-table",
interactive=False,
visible=False,
)
search_bar_prev.submit(
filter_search,
[dummy_prev_table, search_bar_prev],
prev_table,
queue=True
)
ver_selection.change(
select_prev_df,
[ver_selection],
prev_table,
queue=True
)
demo.load()
demo.queue()
demo.launch() |