Spaces:
Runtime error
Runtime error
import os | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from src.assets.text_content import SHORT_NAMES | |
# Set the folder name to save csv files | |
global csvs_path | |
csvs_path = 'versions' | |
def get_csv_data(): | |
''' | |
Get data from csv files saved locally | |
Args: | |
None | |
Returns: | |
latest_df: singular list containing dataframe of the latest version of the leaderboard with only 4 columns | |
all_dfs: list of dataframes for previous versions + latest version including columns for all games | |
all_vnames: list of the names for the previous versions + latest version (For Details and Versions Tab Dropdown) | |
''' | |
list_vers = os.listdir(csvs_path) | |
list_vers = [s.split('.csv')[0] for s in list_vers] | |
# Sort by latest version | |
float_content = [float(s[1:]) for s in list_vers] | |
float_content.sort(reverse=True) | |
list_vers = ['v'+str(s) for s in float_content] | |
DFS = [] | |
for csv in list_vers: | |
read_path = os.path.join(csvs_path, csv + '.csv') | |
df = pd.read_csv(read_path) | |
df = process_df(df) | |
df = df.sort_values(by=list(df.columns)[1], ascending=False) # Sort by clemscore | |
DFS.append(df) | |
# Only keep relavant columns for the main leaderboard | |
latest_df_dummy = DFS[0] | |
all_columns = list(latest_df_dummy.columns) | |
keep_columns = all_columns[0:4] | |
latest_df_dummy = latest_df_dummy.drop(columns=[c for c in all_columns if c not in keep_columns]) | |
latest_df = [latest_df_dummy] | |
all_dfs = [] | |
all_vnames = [] | |
for df, name in zip(DFS, list_vers): | |
all_dfs.append(df) | |
all_vnames.append(name) | |
return latest_df, all_dfs, all_vnames | |
def process_df(df: pd.DataFrame) -> pd.DataFrame: | |
''' | |
Process dataframe | |
- Remove repition in model names | |
- Convert datatypes to sort by "float" instead of "str" for sorting | |
- Update column names | |
Args: | |
df: Unprocessed Dataframe (after using update_cols) | |
Returns: | |
df: Processed Dataframe | |
''' | |
# Change column type to float from str | |
list_column_names = list(df.columns) | |
model_col_name = list_column_names[0] | |
for col in list_column_names: | |
if col != model_col_name: | |
df[col] = df[col].astype(float) | |
# Remove repetition in model names, if any | |
models_list = [] | |
for i in range(len(df)): | |
model_name = df.iloc[i][model_col_name] | |
splits = model_name.split('--') | |
splits = [split.replace('-t0.0', '') for split in splits] # Comment to not remove -t0.0 | |
if splits[0] == splits[1]: | |
models_list.append(splits[0]) | |
else: | |
models_list.append(splits[0] + "--" + splits[1]) | |
df[model_col_name] = models_list | |
# Update column names | |
update = ['Model', 'Clemscore', '% Played', 'Quality Score'] | |
game_metrics = list_column_names[4:] | |
for col in game_metrics: | |
splits = col.split(',') | |
update.append(splits[0].capitalize() + "" + splits[1]) | |
map_cols = {} | |
for i in range(len(update)): | |
map_cols[list_column_names[i]] = str(update[i]) | |
df = df.rename(columns=map_cols) | |
return df | |
def filter_search(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
''' | |
Filter the dataframe based on the search query | |
Args: | |
df: Unfiltered dataframe | |
query: a string of queries separated by ";" | |
Return: | |
filtered_df: Dataframe containing searched queries in the 'Model' column | |
''' | |
queries = query.split(';') | |
list_cols = list(df.columns) | |
df_len = len(df) | |
filtered_models = [] | |
models_list = list(df[list_cols[0]]) | |
for q in queries: | |
q = q.lower() | |
q = q.strip() | |
for i in range(df_len): | |
model_name = models_list[i] | |
if q in model_name.lower(): | |
filtered_models.append(model_name) # Append model names containing query q | |
filtered_df = df[df[list_cols[0]].isin(filtered_models)] | |
if query == "": | |
return df | |
return filtered_df | |
###################################FOR PLOTS################################################## | |
def plot_graph(df:pd.DataFrame, LIST:list): | |
''' | |
Takes in a list of models to plot | |
Args: | |
df: A dummy dataframe of latest version | |
LIST: List of models to plot | |
Returns: | |
Fig: figure to plot | |
''' | |
short_names = label_map(LIST) | |
list_columns = list(df.columns) | |
df = df[df[list_columns[0]].isin(LIST)] | |
X = df[list_columns[2]] | |
fig, ax = plt.subplots() | |
for model in LIST: | |
short = short_names[model] | |
model_df = df[df[list_columns[0]] == model] | |
x = model_df[list_columns[2]] | |
y = model_df[list_columns[3]] | |
color = plt.cm.rainbow(x / max(X)) # Use a colormap for different colors | |
plt.scatter(x, y, color=color) | |
plt.annotate(f'{short}', (x, y), textcoords="offset points", xytext=(0, -15), ha='center', rotation=0) | |
ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2) | |
ax.set_xticks(np.arange(0,110,10)) | |
plt.xlim(-10, 110) | |
plt.ylim(-10, 110) | |
plt.xlabel('% Played') | |
plt.ylabel('Quality Score') | |
plt.title('Overview of benchmark results') | |
plt.show() | |
return fig | |
# ['Model', 'Clemscore', 'All(Played)', 'All(Quality Score)'] | |
def compare_plots(df: pd.DataFrame, LIST1: list, LIST2: list): | |
''' | |
Quality Score v/s % Played plot by selecting models | |
Args: | |
df: A dummy dataframe of latest version | |
LIST1: The list of open source models to show in the plot, updated from frontend | |
LIST2: The list of commercial models to show in the plot, updated from frontend | |
Returns: | |
fig: The plot | |
''' | |
# Combine lists for Open source and commercial models | |
LIST = LIST1 + LIST2 | |
fig = plot_graph(df, LIST) | |
return fig | |
def shorten_model_name(full_name): | |
# Split the name into parts | |
parts = full_name.split('-') | |
# Process the name parts to keep only the parts with digits (model sizes and versions) | |
short_name_parts = [part for part in parts if any(char.isdigit() for char in part)] | |
if len(parts) == 1: | |
short_name = ''.join(full_name[0:min(3, len(full_name))]) | |
else: | |
# Join the parts to form the short name | |
short_name = '-'.join(short_name_parts) | |
# Remove any leading or trailing hyphens | |
short_name = full_name[0] + '-'+ short_name.strip('-') | |
return short_name | |
def label_map(model_list: list) -> dict: | |
''' | |
Generate a map from long names to short names, to plot them in frontend graph | |
Define the short names in src/assets/text_content.py | |
Args: | |
model_list: A list of long model names | |
Returns: | |
short_name: A map from long to list of short name + indication if models are same or different | |
''' | |
short_names = {} | |
for model_name in model_list: | |
if model_name in SHORT_NAMES: | |
short_name = SHORT_NAMES[model_name] | |
else: | |
short_name = shorten_model_name(model_name) | |
# Define the short name and indicate both models are same | |
short_names[model_name] = short_name | |
return short_names | |
def split_models(MODEL_LIST: list): | |
''' | |
Split the models into open source and commercial | |
''' | |
open_models = [] | |
comm_models = [] | |
for model in MODEL_LIST: | |
if model.startswith(('gpt-', 'claude-', 'command')): | |
comm_models.append(model) | |
else: | |
open_models.append(model) | |
open_models.sort(key=lambda o: o.upper()) | |
comm_models.sort(key=lambda c: c.upper()) | |
return open_models, comm_models | |