r3gm commited on
Commit
9ba9778
·
1 Parent(s): e326ab0

Upload 6 files

Browse files
Files changed (6) hide show
  1. LICENSE +21 -0
  2. config.py +96 -0
  3. infer.py +942 -0
  4. requirements.txt +25 -0
  5. rmvpe.py +432 -0
  6. vc_infer_pipeline.py +443 -0
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 arkandash
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
config.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import sys
3
+ import torch
4
+ from multiprocessing import cpu_count
5
+
6
+ class Config:
7
+ def __init__(self):
8
+ self.device = "cuda:0"
9
+ self.is_half = True
10
+ self.n_cpu = 0
11
+ self.gpu_name = None
12
+ self.gpu_mem = None
13
+ (
14
+ self.colab,
15
+ self.api,
16
+ ) = self.arg_parse()
17
+ self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
18
+
19
+ @staticmethod
20
+ def arg_parse() -> tuple:
21
+ parser = argparse.ArgumentParser()
22
+ parser.add_argument("--colab", action="store_true", help="Launch in colab")
23
+ parser.add_argument("--api", action="store_true", help="Launch with api")
24
+ cmd_opts = parser.parse_args()
25
+
26
+ return (
27
+ cmd_opts.colab,
28
+ cmd_opts.api
29
+ )
30
+
31
+ # has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
32
+ # check `getattr` and try it for compatibility
33
+ @staticmethod
34
+ def has_mps() -> bool:
35
+ if not torch.backends.mps.is_available():
36
+ return False
37
+ try:
38
+ torch.zeros(1).to(torch.device("mps"))
39
+ return True
40
+ except Exception:
41
+ return False
42
+
43
+ def device_config(self) -> tuple:
44
+ if torch.cuda.is_available():
45
+ i_device = int(self.device.split(":")[-1])
46
+ self.gpu_name = torch.cuda.get_device_name(i_device)
47
+ if (
48
+ ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
49
+ or "P40" in self.gpu_name.upper()
50
+ or "1060" in self.gpu_name
51
+ or "1070" in self.gpu_name
52
+ or "1080" in self.gpu_name
53
+ ):
54
+ print("INFO: Found GPU", self.gpu_name, ", force to fp32")
55
+ self.is_half = False
56
+ else:
57
+ print("INFO: Found GPU", self.gpu_name)
58
+ self.gpu_mem = int(
59
+ torch.cuda.get_device_properties(i_device).total_memory
60
+ / 1024
61
+ / 1024
62
+ / 1024
63
+ + 0.4
64
+ )
65
+ elif self.has_mps():
66
+ print("INFO: No supported Nvidia GPU found, use MPS instead")
67
+ self.device = "mps"
68
+ self.is_half = False
69
+ else:
70
+ print("INFO: No supported Nvidia GPU found, use CPU instead")
71
+ self.device = "cpu"
72
+ self.is_half = False
73
+
74
+ if self.n_cpu == 0:
75
+ self.n_cpu = cpu_count()
76
+
77
+ if self.is_half:
78
+ # 6G显存配置
79
+ x_pad = 3
80
+ x_query = 10
81
+ x_center = 60
82
+ x_max = 65
83
+ else:
84
+ # 5G显存配置
85
+ x_pad = 1
86
+ x_query = 6
87
+ x_center = 38
88
+ x_max = 41
89
+
90
+ if self.gpu_mem != None and self.gpu_mem <= 4:
91
+ x_pad = 1
92
+ x_query = 5
93
+ x_center = 30
94
+ x_max = 32
95
+
96
+ return x_pad, x_query, x_center, x_max
infer.py ADDED
@@ -0,0 +1,942 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch, os, traceback, sys, warnings, shutil, numpy as np
2
+ import gradio as gr
3
+ import librosa
4
+ import asyncio
5
+ import rarfile
6
+ import edge_tts
7
+ import yt_dlp
8
+ import ffmpeg
9
+ import gdown
10
+ import subprocess
11
+ import wave
12
+ import soundfile as sf
13
+ from scipy.io import wavfile
14
+ from datetime import datetime
15
+ from urllib.parse import urlparse
16
+ from mega import Mega
17
+
18
+ now_dir = os.getcwd()
19
+ tmp = os.path.join(now_dir, "TEMP")
20
+ shutil.rmtree(tmp, ignore_errors=True)
21
+ os.makedirs(tmp, exist_ok=True)
22
+ os.environ["TEMP"] = tmp
23
+ from lib.infer_pack.models import (
24
+ SynthesizerTrnMs256NSFsid,
25
+ SynthesizerTrnMs256NSFsid_nono,
26
+ SynthesizerTrnMs768NSFsid,
27
+ SynthesizerTrnMs768NSFsid_nono,
28
+ )
29
+ from fairseq import checkpoint_utils
30
+ from vc_infer_pipeline import VC
31
+ from config import Config
32
+ config = Config()
33
+
34
+ tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
35
+ voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
36
+
37
+ hubert_model = None
38
+
39
+ f0method_mode = ["pm", "harvest", "crepe"]
40
+ f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
41
+
42
+ if os.path.isfile("rmvpe.pt"):
43
+ f0method_mode.insert(2, "rmvpe")
44
+ f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"
45
+
46
+ def load_hubert():
47
+ global hubert_model
48
+ models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
49
+ ["hubert_base.pt"],
50
+ suffix="",
51
+ )
52
+ hubert_model = models[0]
53
+ hubert_model = hubert_model.to(config.device)
54
+ if config.is_half:
55
+ hubert_model = hubert_model.half()
56
+ else:
57
+ hubert_model = hubert_model.float()
58
+ hubert_model.eval()
59
+
60
+ load_hubert()
61
+
62
+ weight_root = "weights"
63
+ index_root = "weights/index"
64
+ weights_model = []
65
+ weights_index = []
66
+ for _, _, model_files in os.walk(weight_root):
67
+ for file in model_files:
68
+ if file.endswith(".pth"):
69
+ weights_model.append(file)
70
+ for _, _, index_files in os.walk(index_root):
71
+ for file in index_files:
72
+ if file.endswith('.index') and "trained" not in file:
73
+ weights_index.append(os.path.join(index_root, file))
74
+
75
+ def check_models():
76
+ weights_model = []
77
+ weights_index = []
78
+ for _, _, model_files in os.walk(weight_root):
79
+ for file in model_files:
80
+ if file.endswith(".pth"):
81
+ weights_model.append(file)
82
+ for _, _, index_files in os.walk(index_root):
83
+ for file in index_files:
84
+ if file.endswith('.index') and "trained" not in file:
85
+ weights_index.append(os.path.join(index_root, file))
86
+ return (
87
+ gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]),
88
+ gr.Dropdown.update(choices=sorted(weights_index))
89
+ )
90
+
91
+ def clean():
92
+ return (
93
+ gr.Dropdown.update(value=""),
94
+ gr.Slider.update(visible=False)
95
+ )
96
+
97
+ def vc_single(
98
+ sid,
99
+ vc_audio_mode,
100
+ input_audio_path,
101
+ input_upload_audio,
102
+ vocal_audio,
103
+ tts_text,
104
+ tts_voice,
105
+ f0_up_key,
106
+ f0_file,
107
+ f0_method,
108
+ file_index,
109
+ index_rate,
110
+ filter_radius,
111
+ resample_sr,
112
+ rms_mix_rate,
113
+ protect
114
+ ): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
115
+ global tgt_sr, net_g, vc, hubert_model, version, cpt
116
+ try:
117
+ logs = []
118
+ print(f"Converting...")
119
+ logs.append(f"Converting...")
120
+ yield "\n".join(logs), None
121
+ if vc_audio_mode == "Input path" or "Youtube" and input_audio_path != "":
122
+ audio, sr = librosa.load(input_audio_path, sr=16000, mono=True)
123
+ elif vc_audio_mode == "Upload audio":
124
+ selected_audio = input_upload_audio
125
+ if vocal_audio:
126
+ selected_audio = vocal_audio
127
+ elif input_upload_audio:
128
+ selected_audio = input_upload_audio
129
+ sampling_rate, audio = selected_audio
130
+ duration = audio.shape[0] / sampling_rate
131
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
132
+ if len(audio.shape) > 1:
133
+ audio = librosa.to_mono(audio.transpose(1, 0))
134
+ if sampling_rate != 16000:
135
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
136
+ elif vc_audio_mode == "TTS Audio":
137
+ if tts_text is None or tts_voice is None:
138
+ return "You need to enter text and select a voice", None
139
+ asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
140
+ audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
141
+ input_audio_path = "tts.mp3"
142
+ f0_up_key = int(f0_up_key)
143
+ times = [0, 0, 0]
144
+ if hubert_model == None:
145
+ load_hubert()
146
+ if_f0 = cpt.get("f0", 1)
147
+ audio_opt = vc.pipeline(
148
+ hubert_model,
149
+ net_g,
150
+ sid,
151
+ audio,
152
+ input_audio_path,
153
+ times,
154
+ f0_up_key,
155
+ f0_method,
156
+ file_index,
157
+ # file_big_npy,
158
+ index_rate,
159
+ if_f0,
160
+ filter_radius,
161
+ tgt_sr,
162
+ resample_sr,
163
+ rms_mix_rate,
164
+ version,
165
+ protect,
166
+ f0_file=f0_file
167
+ )
168
+ if resample_sr >= 16000 and tgt_sr != resample_sr:
169
+ tgt_sr = resample_sr
170
+ index_info = (
171
+ "Using index:%s." % file_index
172
+ if os.path.exists(file_index)
173
+ else "Index not used."
174
+ )
175
+ print("Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
176
+ index_info,
177
+ times[0],
178
+ times[1],
179
+ times[2],
180
+ ))
181
+ info = f"{index_info}\n[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
182
+ logs.append(info)
183
+ yield "\n".join(logs), (tgt_sr, audio_opt)
184
+ except:
185
+ info = traceback.format_exc()
186
+ print(info)
187
+ logs.append(info)
188
+ yield "\n".join(logs), None
189
+
190
+ def get_vc(sid, to_return_protect0):
191
+ global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index
192
+ if sid == "" or sid == []:
193
+ global hubert_model
194
+ if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
195
+ print("clean_empty_cache")
196
+ del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
197
+ hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
198
+ if torch.cuda.is_available():
199
+ torch.cuda.empty_cache()
200
+ ###楼下不这么折腾清理不干净
201
+ if_f0 = cpt.get("f0", 1)
202
+ version = cpt.get("version", "v1")
203
+ if version == "v1":
204
+ if if_f0 == 1:
205
+ net_g = SynthesizerTrnMs256NSFsid(
206
+ *cpt["config"], is_half=config.is_half
207
+ )
208
+ else:
209
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
210
+ elif version == "v2":
211
+ if if_f0 == 1:
212
+ net_g = SynthesizerTrnMs768NSFsid(
213
+ *cpt["config"], is_half=config.is_half
214
+ )
215
+ else:
216
+ net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
217
+ del net_g, cpt
218
+ if torch.cuda.is_available():
219
+ torch.cuda.empty_cache()
220
+ cpt = None
221
+ return (
222
+ gr.Slider.update(maximum=2333, visible=False),
223
+ gr.Slider.update(visible=True),
224
+ gr.Dropdown.update(choices=sorted(weights_index), value=""),
225
+ gr.Markdown.update(value="# <center> No model selected")
226
+ )
227
+ print(f"Loading {sid} model...")
228
+ selected_model = sid[:-4]
229
+ cpt = torch.load(os.path.join(weight_root, sid), map_location="cpu")
230
+ tgt_sr = cpt["config"][-1]
231
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
232
+ if_f0 = cpt.get("f0", 1)
233
+ if if_f0 == 0:
234
+ to_return_protect0 = {
235
+ "visible": False,
236
+ "value": 0.5,
237
+ "__type__": "update",
238
+ }
239
+ else:
240
+ to_return_protect0 = {
241
+ "visible": True,
242
+ "value": to_return_protect0,
243
+ "__type__": "update",
244
+ }
245
+ version = cpt.get("version", "v1")
246
+ if version == "v1":
247
+ if if_f0 == 1:
248
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
249
+ else:
250
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
251
+ elif version == "v2":
252
+ if if_f0 == 1:
253
+ net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
254
+ else:
255
+ net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
256
+ del net_g.enc_q
257
+ print(net_g.load_state_dict(cpt["weight"], strict=False))
258
+ net_g.eval().to(config.device)
259
+ if config.is_half:
260
+ net_g = net_g.half()
261
+ else:
262
+ net_g = net_g.float()
263
+ vc = VC(tgt_sr, config)
264
+ n_spk = cpt["config"][-3]
265
+ weights_index = []
266
+ for _, _, index_files in os.walk(index_root):
267
+ for file in index_files:
268
+ if file.endswith('.index') and "trained" not in file:
269
+ weights_index.append(os.path.join(index_root, file))
270
+ if weights_index == []:
271
+ selected_index = gr.Dropdown.update(value="")
272
+ else
273
+ selected_index = gr.Dropdown.update(value=weights_index[0])
274
+ for index, model_index in enumerate(weights_index):
275
+ if selected_model in model_index:
276
+ selected_index = gr.Dropdown.update(value=weights_index[index])
277
+ break
278
+ return (
279
+ gr.Slider.update(maximum=n_spk, visible=True),
280
+ to_return_protect0,
281
+ selected_index,
282
+ gr.Markdown.update(
283
+ f'## <center> {selected_model}\n'+
284
+ f'### <center> RVC {version} Model'
285
+ )
286
+ )
287
+
288
+ def find_audio_files(folder_path, extensions):
289
+ audio_files = []
290
+ for root, dirs, files in os.walk(folder_path):
291
+ for file in files:
292
+ if any(file.endswith(ext) for ext in extensions):
293
+ audio_files.append(file)
294
+ return audio_files
295
+
296
+ def vc_multi(
297
+ spk_item,
298
+ vc_input,
299
+ vc_output,
300
+ vc_transform0,
301
+ f0method0,
302
+ file_index,
303
+ index_rate,
304
+ filter_radius,
305
+ resample_sr,
306
+ rms_mix_rate,
307
+ protect,
308
+ ):
309
+ global tgt_sr, net_g, vc, hubert_model, version, cpt
310
+ logs = []
311
+ logs.append("Converting...")
312
+ yield "\n".join(logs)
313
+ print()
314
+ try:
315
+ if os.path.exists(vc_input):
316
+ folder_path = vc_input
317
+ extensions = [".mp3", ".wav", ".flac", ".ogg"]
318
+ audio_files = find_audio_files(folder_path, extensions)
319
+ for index, file in enumerate(audio_files, start=1):
320
+ audio, sr = librosa.load(os.path.join(folder_path, file), sr=16000, mono=True)
321
+ input_audio_path = folder_path, file
322
+ f0_up_key = int(vc_transform0)
323
+ times = [0, 0, 0]
324
+ if hubert_model == None:
325
+ load_hubert()
326
+ if_f0 = cpt.get("f0", 1)
327
+ audio_opt = vc.pipeline(
328
+ hubert_model,
329
+ net_g,
330
+ spk_item,
331
+ audio,
332
+ input_audio_path,
333
+ times,
334
+ f0_up_key,
335
+ f0method0,
336
+ file_index,
337
+ index_rate,
338
+ if_f0,
339
+ filter_radius,
340
+ tgt_sr,
341
+ resample_sr,
342
+ rms_mix_rate,
343
+ version,
344
+ protect,
345
+ f0_file=None
346
+ )
347
+ if resample_sr >= 16000 and tgt_sr != resample_sr:
348
+ tgt_sr = resample_sr
349
+ output_path = f"{os.path.join(vc_output, file)}"
350
+ os.makedirs(os.path.join(vc_output), exist_ok=True)
351
+ sf.write(
352
+ output_path,
353
+ audio_opt,
354
+ tgt_sr,
355
+ )
356
+ info = f"{index} / {len(audio_files)} | {file}"
357
+ print(info)
358
+ logs.append(info)
359
+ yield "\n".join(logs)
360
+ else:
361
+ logs.append("Folder not found or path doesn't exist.")
362
+ yield "\n".join(logs)
363
+ except:
364
+ info = traceback.format_exc()
365
+ print(info)
366
+ logs.append(info)
367
+ yield "\n".join(logs)
368
+
369
+ def download_audio(url, audio_provider):
370
+ logs = []
371
+ os.makedirs("dl_audio", exist_ok=True)
372
+ if url == "":
373
+ logs.append("URL required!")
374
+ yield None, "\n".join(logs)
375
+ return None, "\n".join(logs)
376
+ if audio_provider == "Youtube":
377
+ logs.append("Downloading the audio...")
378
+ yield None, "\n".join(logs)
379
+ ydl_opts = {
380
+ 'noplaylist': True,
381
+ 'format': 'bestaudio/best',
382
+ 'postprocessors': [{
383
+ 'key': 'FFmpegExtractAudio',
384
+ 'preferredcodec': 'wav',
385
+ }],
386
+ "outtmpl": 'result/dl_audio/audio',
387
+ }
388
+ audio_path = "result/dl_audio/audio.wav"
389
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
390
+ ydl.download([url])
391
+ logs.append("Download Complete.")
392
+ yield audio_path, "\n".join(logs)
393
+
394
+ def cut_vocal_and_inst_yt(split_model):
395
+ logs = []
396
+ logs.append("Starting the audio splitting process...")
397
+ yield "\n".join(logs), None, None, None
398
+ command = f"demucs --two-stems=vocals -n {split_model} result/dl_audio/audio.wav -o output"
399
+ result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
400
+ for line in result.stdout:
401
+ logs.append(line)
402
+ yield "\n".join(logs), None, None, None
403
+ print(result.stdout)
404
+ vocal = f"output/{split_model}/audio/vocals.wav"
405
+ inst = f"output/{split_model}/audio/no_vocals.wav"
406
+ logs.append("Audio splitting complete.")
407
+ yield "\n".join(logs), vocal, inst, vocal
408
+
409
+ def cut_vocal_and_inst(split_model, audio_data):
410
+ logs = []
411
+ vocal_path = "output/result/audio.wav"
412
+ os.makedirs("output/result", exist_ok=True)
413
+ wavfile.write(vocal_path, audio_data[0], audio_data[1])
414
+ logs.append("Starting the audio splitting process...")
415
+ yield "\n".join(logs), None, None
416
+ command = f"demucs --two-stems=vocals -n {split_model} {vocal_path} -o output"
417
+ result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
418
+ for line in result.stdout:
419
+ logs.append(line)
420
+ yield "\n".join(logs), None, None
421
+ print(result.stdout)
422
+ vocal = f"output/{split_model}/audio/vocals.wav"
423
+ inst = f"output/{split_model}/audio/no_vocals.wav"
424
+ logs.append("Audio splitting complete.")
425
+ yield "\n".join(logs), vocal, inst
426
+
427
+ def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume, split_model):
428
+ os.makedirs("output/result", exist_ok=True)
429
+ vocal_path = "output/result/output.wav"
430
+ output_path = "output/result/combine.mp3"
431
+ inst_path = f"output/{split_model}/audio/no_vocals.wav"
432
+ wavfile.write(vocal_path, audio_data[0], audio_data[1])
433
+ command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
434
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
435
+ print(result.stdout.decode())
436
+ return output_path
437
+
438
+ def download_and_extract_models(urls):
439
+ logs = []
440
+ os.makedirs("zips", exist_ok=True)
441
+ os.makedirs(os.path.join("zips", "extract"), exist_ok=True)
442
+ os.makedirs(os.path.join(weight_root), exist_ok=True)
443
+ os.makedirs(os.path.join(index_root), exist_ok=True)
444
+ for link in urls.splitlines():
445
+ url = link.strip()
446
+ if not url:
447
+ raise gr.Error("URL Required!")
448
+ return "No URLs provided."
449
+ model_zip = urlparse(url).path.split('/')[-2] + '.zip'
450
+ model_zip_path = os.path.join('zips', model_zip)
451
+ logs.append(f"Downloading...")
452
+ yield "\n".join(logs)
453
+ if "drive.google.com" in url:
454
+ gdown.download(url, os.path.join("zips", "extract"), quiet=False)
455
+ elif "mega.nz" in url:
456
+ m = Mega()
457
+ m.download_url(url, 'zips')
458
+ else:
459
+ os.system(f"wget {url} -O {model_zip_path}")
460
+ logs.append(f"Extracting...")
461
+ yield "\n".join(logs)
462
+ for filename in os.listdir("zips"):
463
+ archived_file = os.path.join("zips", filename)
464
+ if filename.endswith(".zip"):
465
+ shutil.unpack_archive(archived_file, os.path.join("zips", "extract"), 'zip')
466
+ elif filename.endswith(".rar"):
467
+ with rarfile.RarFile(archived_file, 'r') as rar:
468
+ rar.extractall(os.path.join("zips", "extract"))
469
+ for _, dirs, files in os.walk(os.path.join("zips", "extract")):
470
+ logs.append(f"Searching Model and Index...")
471
+ yield "\n".join(logs)
472
+ model = False
473
+ index = False
474
+ if files:
475
+ for file in files:
476
+ if file.endswith(".pth"):
477
+ basename = file[:-4]
478
+ shutil.move(os.path.join("zips", "extract", file), os.path.join(weight_root, file))
479
+ model = True
480
+ if file.endswith('.index') and "trained" not in file:
481
+ shutil.move(os.path.join("zips", "extract", file), os.path.join(index_root, file))
482
+ index = True
483
+ else:
484
+ logs.append("No model in main folder.")
485
+ yield "\n".join(logs)
486
+ logs.append("Searching in subfolders...")
487
+ yield "\n".join(logs)
488
+ for sub_dir in dirs:
489
+ for _, _, sub_files in os.walk(os.path.join("zips", "extract", sub_dir)):
490
+ for file in sub_files:
491
+ if file.endswith(".pth"):
492
+ basename = file[:-4]
493
+ shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(weight_root, file))
494
+ model = True
495
+ if file.endswith('.index') and "trained" not in file:
496
+ shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(index_root, file))
497
+ index = True
498
+ shutil.rmtree(os.path.join("zips", "extract", sub_dir))
499
+ if index is False:
500
+ logs.append("Model only file, no Index file detected.")
501
+ yield "\n".join(logs)
502
+ logs.append("Download Completed!")
503
+ yield "\n".join(logs)
504
+ logs.append("Successfully download all models! Refresh your model list to load the model")
505
+ yield "\n".join(logs)
506
+
507
+ def use_microphone(microphone):
508
+ if microphone == True:
509
+ return gr.Audio.update(source="microphone")
510
+ else:
511
+ return gr.Audio.update(source="upload")
512
+
513
+ def change_audio_mode(vc_audio_mode):
514
+ if vc_audio_mode == "Input path":
515
+ return (
516
+ # Input & Upload
517
+ gr.Textbox.update(visible=True),
518
+ gr.Checkbox.update(visible=False),
519
+ gr.Audio.update(visible=False),
520
+ # Youtube
521
+ gr.Dropdown.update(visible=False),
522
+ gr.Textbox.update(visible=False),
523
+ gr.Textbox.update(visible=False),
524
+ gr.Button.update(visible=False),
525
+ # Splitter
526
+ gr.Dropdown.update(visible=True),
527
+ gr.Textbox.update(visible=True),
528
+ gr.Button.update(visible=True),
529
+ gr.Button.update(visible=False),
530
+ gr.Audio.update(visible=False),
531
+ gr.Audio.update(visible=True),
532
+ gr.Audio.update(visible=True),
533
+ gr.Slider.update(visible=True),
534
+ gr.Slider.update(visible=True),
535
+ gr.Audio.update(visible=True),
536
+ gr.Button.update(visible=True),
537
+ # TTS
538
+ gr.Textbox.update(visible=False),
539
+ gr.Dropdown.update(visible=False)
540
+ )
541
+ elif vc_audio_mode == "Upload audio":
542
+ return (
543
+ # Input & Upload
544
+ gr.Textbox.update(visible=False),
545
+ gr.Checkbox.update(visible=True),
546
+ gr.Audio.update(visible=True),
547
+ # Youtube
548
+ gr.Dropdown.update(visible=False),
549
+ gr.Textbox.update(visible=False),
550
+ gr.Textbox.update(visible=False),
551
+ gr.Button.update(visible=False),
552
+ # Splitter
553
+ gr.Dropdown.update(visible=True),
554
+ gr.Textbox.update(visible=True),
555
+ gr.Button.update(visible=False),
556
+ gr.Button.update(visible=True),
557
+ gr.Audio.update(visible=False),
558
+ gr.Audio.update(visible=True),
559
+ gr.Audio.update(visible=True),
560
+ gr.Slider.update(visible=True),
561
+ gr.Slider.update(visible=True),
562
+ gr.Audio.update(visible=True),
563
+ gr.Button.update(visible=True),
564
+ # TTS
565
+ gr.Textbox.update(visible=False),
566
+ gr.Dropdown.update(visible=False)
567
+ )
568
+ elif vc_audio_mode == "Youtube":
569
+ return (
570
+ # Input & Upload
571
+ gr.Textbox.update(visible=False),
572
+ gr.Checkbox.update(visible=False),
573
+ gr.Audio.update(visible=False),
574
+ # Youtube
575
+ gr.Dropdown.update(visible=True),
576
+ gr.Textbox.update(visible=True),
577
+ gr.Textbox.update(visible=True),
578
+ gr.Button.update(visible=True),
579
+ # Splitter
580
+ gr.Dropdown.update(visible=True),
581
+ gr.Textbox.update(visible=True),
582
+ gr.Button.update(visible=True),
583
+ gr.Button.update(visible=False),
584
+ gr.Audio.update(visible=True),
585
+ gr.Audio.update(visible=True),
586
+ gr.Audio.update(visible=True),
587
+ gr.Slider.update(visible=True),
588
+ gr.Slider.update(visible=True),
589
+ gr.Audio.update(visible=True),
590
+ gr.Button.update(visible=True),
591
+ # TTS
592
+ gr.Textbox.update(visible=False),
593
+ gr.Dropdown.update(visible=False)
594
+ )
595
+ elif vc_audio_mode == "TTS Audio":
596
+ return (
597
+ # Input & Upload
598
+ gr.Textbox.update(visible=False),
599
+ gr.Checkbox.update(visible=False),
600
+ gr.Audio.update(visible=False),
601
+ # Youtube
602
+ gr.Dropdown.update(visible=False),
603
+ gr.Textbox.update(visible=False),
604
+ gr.Textbox.update(visible=False),
605
+ gr.Button.update(visible=False),
606
+ # Splitter
607
+ gr.Dropdown.update(visible=False),
608
+ gr.Textbox.update(visible=False),
609
+ gr.Button.update(visible=False),
610
+ gr.Button.update(visible=False),
611
+ gr.Audio.update(visible=False),
612
+ gr.Audio.update(visible=False),
613
+ gr.Audio.update(visible=False),
614
+ gr.Slider.update(visible=False),
615
+ gr.Slider.update(visible=False),
616
+ gr.Audio.update(visible=False),
617
+ gr.Button.update(visible=False),
618
+ # TTS
619
+ gr.Textbox.update(visible=True),
620
+ gr.Dropdown.update(visible=True)
621
+ )
622
+
623
+ with gr.Blocks() as app:
624
+ gr.Markdown(
625
+ "# <center> Advanced RVC Inference\n"
626
+ )
627
+ with gr.Row():
628
+ sid = gr.Dropdown(
629
+ label="Weight",
630
+ choices=sorted(weights_model),
631
+ )
632
+ file_index = gr.Dropdown(
633
+ label="List of index file",
634
+ choices=sorted(weights_index),
635
+ interactive=True,
636
+ )
637
+ spk_item = gr.Slider(
638
+ minimum=0,
639
+ maximum=2333,
640
+ step=1,
641
+ label="Speaker ID",
642
+ value=0,
643
+ visible=False,
644
+ interactive=True,
645
+ )
646
+ refresh_model = gr.Button("Refresh model list", variant="primary")
647
+ clean_button = gr.Button("Clear Model from memory", variant="primary")
648
+ refresh_model.click(
649
+ fn=check_models, inputs=[], outputs=[sid, file_index]
650
+ )
651
+ clean_button.click(fn=clean, inputs=[], outputs=[sid, spk_item])
652
+ with gr.TabItem("Inference"):
653
+ selected_model = gr.Markdown(value="# <center> No model selected")
654
+ with gr.Row():
655
+ with gr.Column():
656
+ vc_audio_mode = gr.Dropdown(label="Input voice", choices=["Input path", "Upload audio", "Youtube", "TTS Audio"], allow_custom_value=False, value="Upload audio")
657
+ # Input
658
+ vc_input = gr.Textbox(label="Input audio path", visible=False)
659
+ # Upload
660
+ vc_microphone_mode = gr.Checkbox(label="Use Microphone", value=False, visible=True, interactive=True)
661
+ vc_upload = gr.Audio(label="Upload audio file", source="upload", visible=True, interactive=True)
662
+ # Youtube
663
+ vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
664
+ vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
665
+ vc_log_yt = gr.Textbox(label="Output Information", visible=False, interactive=False)
666
+ vc_download_button = gr.Button("Download Audio", variant="primary", visible=False)
667
+ vc_audio_preview = gr.Audio(label="Downloaded Audio Preview", visible=False)
668
+ # TTS
669
+ tts_text = gr.Textbox(label="TTS text", info="Text to speech input", visible=False)
670
+ tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
671
+ # Splitter
672
+ vc_split_model = gr.Dropdown(label="Splitter Model", choices=["hdemucs_mmi", "htdemucs", "htdemucs_ft", "mdx", "mdx_q", "mdx_extra_q"], allow_custom_value=False, visible=True, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
673
+ vc_split_log = gr.Textbox(label="Output Information", visible=True, interactive=False)
674
+ vc_split_yt = gr.Button("Split Audio", variant="primary", visible=False)
675
+ vc_split = gr.Button("Split Audio", variant="primary", visible=True)
676
+ vc_vocal_preview = gr.Audio(label="Vocal Preview", interactive=False, visible=True)
677
+ vc_inst_preview = gr.Audio(label="Instrumental Preview", interactive=False, visible=True)
678
+ with gr.Column():
679
+ vc_transform0 = gr.Number(
680
+ label="Transpose",
681
+ info='Type "12" to change from male to female convertion or Type "-12" to change female to male convertion.',
682
+ value=0
683
+ )
684
+ f0method0 = gr.Radio(
685
+ label="Pitch extraction algorithm",
686
+ info=f0method_info,
687
+ choices=f0method_mode,
688
+ value="pm",
689
+ interactive=True,
690
+ )
691
+ index_rate0 = gr.Slider(
692
+ minimum=0,
693
+ maximum=1,
694
+ label="Retrieval feature ratio",
695
+ value=0.7,
696
+ interactive=True,
697
+ )
698
+ filter_radius0 = gr.Slider(
699
+ minimum=0,
700
+ maximum=7,
701
+ label="Apply Median Filtering",
702
+ info="The value represents the filter radius and can reduce breathiness.",
703
+ value=3,
704
+ step=1,
705
+ interactive=True,
706
+ )
707
+ resample_sr0 = gr.Slider(
708
+ minimum=0,
709
+ maximum=48000,
710
+ label="Resample the output audio",
711
+ info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
712
+ value=0,
713
+ step=1,
714
+ interactive=True,
715
+ )
716
+ rms_mix_rate0 = gr.Slider(
717
+ minimum=0,
718
+ maximum=1,
719
+ label="Volume Envelope",
720
+ info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
721
+ value=1,
722
+ interactive=True,
723
+ )
724
+ protect0 = gr.Slider(
725
+ minimum=0,
726
+ maximum=0.5,
727
+ label="Voice Protection",
728
+ info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
729
+ value=0.5,
730
+ step=0.01,
731
+ interactive=True,
732
+ )
733
+ f0_file0 = gr.File(
734
+ label="F0 curve file (Optional)",
735
+ info="One pitch per line, Replace the default F0 and pitch modulation"
736
+ )
737
+ with gr.Column():
738
+ vc_log = gr.Textbox(label="Output Information", interactive=False)
739
+ vc_output = gr.Audio(label="Output Audio", interactive=False)
740
+ vc_convert = gr.Button("Convert", variant="primary")
741
+ vc_vocal_volume = gr.Slider(
742
+ minimum=0,
743
+ maximum=10,
744
+ label="Vocal volume",
745
+ value=1,
746
+ interactive=True,
747
+ step=1,
748
+ info="Adjust vocal volume (Default: 1}",
749
+ visible=True
750
+ )
751
+ vc_inst_volume = gr.Slider(
752
+ minimum=0,
753
+ maximum=10,
754
+ label="Instrument volume",
755
+ value=1,
756
+ interactive=True,
757
+ step=1,
758
+ info="Adjust instrument volume (Default: 1}",
759
+ visible=True
760
+ )
761
+ vc_combined_output = gr.Audio(label="Output Combined Audio", visible=True)
762
+ vc_combine = gr.Button("Combine",variant="primary", visible=True)
763
+ vc_convert.click(
764
+ vc_single,
765
+ [
766
+ spk_item,
767
+ vc_audio_mode,
768
+ vc_input,
769
+ vc_upload,
770
+ vc_vocal_preview,
771
+ tts_text,
772
+ tts_voice,
773
+ vc_transform0,
774
+ f0_file0,
775
+ f0method0,
776
+ file_index,
777
+ index_rate0,
778
+ filter_radius0,
779
+ resample_sr0,
780
+ rms_mix_rate0,
781
+ protect0,
782
+ ],
783
+ [vc_log, vc_output],
784
+ )
785
+ vc_download_button.click(
786
+ fn=download_audio,
787
+ inputs=[vc_link, vc_download_audio],
788
+ outputs=[vc_audio_preview, vc_log_yt]
789
+ )
790
+ vc_split_yt.click(
791
+ fn=cut_vocal_and_inst_yt,
792
+ inputs=[vc_split_model],
793
+ outputs=[vc_split_log, vc_vocal_preview, vc_inst_preview, vc_input]
794
+ )
795
+ vc_split.click(
796
+ fn=cut_vocal_and_inst,
797
+ inputs=[vc_split_model, vc_upload],
798
+ outputs=[vc_split_log, vc_vocal_preview, vc_inst_preview]
799
+ )
800
+ vc_combine.click(
801
+ fn=combine_vocal_and_inst,
802
+ inputs=[vc_output, vc_vocal_volume, vc_inst_volume, vc_split_model],
803
+ outputs=[vc_combined_output]
804
+ )
805
+ vc_microphone_mode.change(
806
+ fn=use_microphone,
807
+ inputs=vc_microphone_mode,
808
+ outputs=vc_upload
809
+ )
810
+ vc_audio_mode.change(
811
+ fn=change_audio_mode,
812
+ inputs=[vc_audio_mode],
813
+ outputs=[
814
+ # Input & Upload
815
+ vc_input,
816
+ vc_microphone_mode,
817
+ vc_upload,
818
+ # Youtube
819
+ vc_download_audio,
820
+ vc_link,
821
+ vc_log_yt,
822
+ vc_download_button,
823
+ # Splitter
824
+ vc_split_model,
825
+ vc_split_log,
826
+ vc_split_yt,
827
+ vc_split,
828
+ vc_audio_preview,
829
+ vc_vocal_preview,
830
+ vc_inst_preview,
831
+ vc_vocal_volume,
832
+ vc_inst_volume,
833
+ vc_combined_output,
834
+ vc_combine,
835
+ # TTS
836
+ tts_text,
837
+ tts_voice
838
+ ]
839
+ )
840
+ sid.change(fn=get_vc, inputs=[sid, protect0], outputs=[spk_item, protect0, file_index, selected_model])
841
+ with gr.TabItem("Batch Inference"):
842
+ with gr.Row():
843
+ with gr.Column():
844
+ vc_input_bat = gr.Textbox(label="Input audio path (folder)", visible=True)
845
+ vc_output_bat = gr.Textbox(label="Output audio path (folder)", value="result/batch", visible=True)
846
+ with gr.Column():
847
+ vc_transform0_bat = gr.Number(
848
+ label="Transpose",
849
+ info='Type "12" to change from male to female convertion or Type "-12" to change female to male convertion.',
850
+ value=0
851
+ )
852
+ f0method0_bat = gr.Radio(
853
+ label="Pitch extraction algorithm",
854
+ info=f0method_info,
855
+ choices=f0method_mode,
856
+ value="pm",
857
+ interactive=True,
858
+ )
859
+ index_rate0_bat = gr.Slider(
860
+ minimum=0,
861
+ maximum=1,
862
+ label="Retrieval feature ratio",
863
+ value=0.7,
864
+ interactive=True,
865
+ )
866
+ filter_radius0_bat = gr.Slider(
867
+ minimum=0,
868
+ maximum=7,
869
+ label="Apply Median Filtering",
870
+ info="The value represents the filter radius and can reduce breathiness.",
871
+ value=3,
872
+ step=1,
873
+ interactive=True,
874
+ )
875
+ resample_sr0_bat = gr.Slider(
876
+ minimum=0,
877
+ maximum=48000,
878
+ label="Resample the output audio",
879
+ info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
880
+ value=0,
881
+ step=1,
882
+ interactive=True,
883
+ )
884
+ rms_mix_rate0_bat = gr.Slider(
885
+ minimum=0,
886
+ maximum=1,
887
+ label="Volume Envelope",
888
+ info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
889
+ value=1,
890
+ interactive=True,
891
+ )
892
+ protect0_bat = gr.Slider(
893
+ minimum=0,
894
+ maximum=0.5,
895
+ label="Voice Protection",
896
+ info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
897
+ value=0.5,
898
+ step=0.01,
899
+ interactive=True,
900
+ )
901
+ with gr.Column():
902
+ vc_log_bat = gr.Textbox(label="Output Information", interactive=False)
903
+ vc_convert_bat = gr.Button("Convert", variant="primary")
904
+ vc_convert_bat.click(
905
+ vc_multi,
906
+ [
907
+ spk_item,
908
+ vc_input_bat,
909
+ vc_output_bat,
910
+ vc_transform0_bat,
911
+ f0method0_bat,
912
+ file_index,
913
+ index_rate0_bat,
914
+ filter_radius0_bat,
915
+ resample_sr0_bat,
916
+ rms_mix_rate0_bat,
917
+ protect0_bat,
918
+ ],
919
+ [vc_log_bat],
920
+ )
921
+ with gr.TabItem("Model Downloader"):
922
+ gr.Markdown(
923
+ "# <center> Model Downloader (Beta)\n"+
924
+ "#### <center> To download multi link you have to put your link to the textbox and every link separated by space\n"+
925
+ "#### <center> Support Direct Link, Mega, Google Drive, etc"
926
+ )
927
+ with gr.Column():
928
+ md_text = gr.Textbox(label="URL")
929
+ with gr.Row():
930
+ md_download = gr.Button(label="Convert", variant="primary")
931
+ md_download_logs = gr.Textbox(label="Output information", interactive=False)
932
+ md_download.click(
933
+ fn=download_and_extract_models,
934
+ inputs=[md_text],
935
+ outputs=[md_download_logs]
936
+ )
937
+ with gr.TabItem("Settings"):
938
+ gr.Markdown(
939
+ "# <center> Settings\n"+
940
+ "#### <center> Work in progress"
941
+ )
942
+ app.queue(concurrency_count=1, max_size=50, api_open=config.api).launch(share=config.colab)
requirements.txt ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wheel
2
+ setuptools
3
+ ffmpeg
4
+ numba==0.56.4
5
+ numpy==1.23.5
6
+ scipy==1.9.3
7
+ librosa==0.9.1
8
+ fairseq==0.12.2
9
+ faiss-cpu==1.7.3
10
+ gradio==3.40.1
11
+ pyworld==0.3.2
12
+ soundfile>=0.12.1
13
+ praat-parselmouth>=0.4.2
14
+ httpx==0.23.0
15
+ tensorboard
16
+ tensorboardX
17
+ torchcrepe
18
+ onnxruntime
19
+ asyncio
20
+ demucs
21
+ edge-tts
22
+ yt_dlp
23
+ rarfile
24
+ mega.py
25
+ gdown
rmvpe.py ADDED
@@ -0,0 +1,432 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys, torch, numpy as np, traceback, pdb
2
+ import torch.nn as nn
3
+ from time import time as ttime
4
+ import torch.nn.functional as F
5
+
6
+
7
+ class BiGRU(nn.Module):
8
+ def __init__(self, input_features, hidden_features, num_layers):
9
+ super(BiGRU, self).__init__()
10
+ self.gru = nn.GRU(
11
+ input_features,
12
+ hidden_features,
13
+ num_layers=num_layers,
14
+ batch_first=True,
15
+ bidirectional=True,
16
+ )
17
+
18
+ def forward(self, x):
19
+ return self.gru(x)[0]
20
+
21
+
22
+ class ConvBlockRes(nn.Module):
23
+ def __init__(self, in_channels, out_channels, momentum=0.01):
24
+ super(ConvBlockRes, self).__init__()
25
+ self.conv = nn.Sequential(
26
+ nn.Conv2d(
27
+ in_channels=in_channels,
28
+ out_channels=out_channels,
29
+ kernel_size=(3, 3),
30
+ stride=(1, 1),
31
+ padding=(1, 1),
32
+ bias=False,
33
+ ),
34
+ nn.BatchNorm2d(out_channels, momentum=momentum),
35
+ nn.ReLU(),
36
+ nn.Conv2d(
37
+ in_channels=out_channels,
38
+ out_channels=out_channels,
39
+ kernel_size=(3, 3),
40
+ stride=(1, 1),
41
+ padding=(1, 1),
42
+ bias=False,
43
+ ),
44
+ nn.BatchNorm2d(out_channels, momentum=momentum),
45
+ nn.ReLU(),
46
+ )
47
+ if in_channels != out_channels:
48
+ self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
49
+ self.is_shortcut = True
50
+ else:
51
+ self.is_shortcut = False
52
+
53
+ def forward(self, x):
54
+ if self.is_shortcut:
55
+ return self.conv(x) + self.shortcut(x)
56
+ else:
57
+ return self.conv(x) + x
58
+
59
+
60
+ class Encoder(nn.Module):
61
+ def __init__(
62
+ self,
63
+ in_channels,
64
+ in_size,
65
+ n_encoders,
66
+ kernel_size,
67
+ n_blocks,
68
+ out_channels=16,
69
+ momentum=0.01,
70
+ ):
71
+ super(Encoder, self).__init__()
72
+ self.n_encoders = n_encoders
73
+ self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
74
+ self.layers = nn.ModuleList()
75
+ self.latent_channels = []
76
+ for i in range(self.n_encoders):
77
+ self.layers.append(
78
+ ResEncoderBlock(
79
+ in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
80
+ )
81
+ )
82
+ self.latent_channels.append([out_channels, in_size])
83
+ in_channels = out_channels
84
+ out_channels *= 2
85
+ in_size //= 2
86
+ self.out_size = in_size
87
+ self.out_channel = out_channels
88
+
89
+ def forward(self, x):
90
+ concat_tensors = []
91
+ x = self.bn(x)
92
+ for i in range(self.n_encoders):
93
+ _, x = self.layers[i](x)
94
+ concat_tensors.append(_)
95
+ return x, concat_tensors
96
+
97
+
98
+ class ResEncoderBlock(nn.Module):
99
+ def __init__(
100
+ self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
101
+ ):
102
+ super(ResEncoderBlock, self).__init__()
103
+ self.n_blocks = n_blocks
104
+ self.conv = nn.ModuleList()
105
+ self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
106
+ for i in range(n_blocks - 1):
107
+ self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
108
+ self.kernel_size = kernel_size
109
+ if self.kernel_size is not None:
110
+ self.pool = nn.AvgPool2d(kernel_size=kernel_size)
111
+
112
+ def forward(self, x):
113
+ for i in range(self.n_blocks):
114
+ x = self.conv[i](x)
115
+ if self.kernel_size is not None:
116
+ return x, self.pool(x)
117
+ else:
118
+ return x
119
+
120
+
121
+ class Intermediate(nn.Module): #
122
+ def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
123
+ super(Intermediate, self).__init__()
124
+ self.n_inters = n_inters
125
+ self.layers = nn.ModuleList()
126
+ self.layers.append(
127
+ ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
128
+ )
129
+ for i in range(self.n_inters - 1):
130
+ self.layers.append(
131
+ ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
132
+ )
133
+
134
+ def forward(self, x):
135
+ for i in range(self.n_inters):
136
+ x = self.layers[i](x)
137
+ return x
138
+
139
+
140
+ class ResDecoderBlock(nn.Module):
141
+ def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
142
+ super(ResDecoderBlock, self).__init__()
143
+ out_padding = (0, 1) if stride == (1, 2) else (1, 1)
144
+ self.n_blocks = n_blocks
145
+ self.conv1 = nn.Sequential(
146
+ nn.ConvTranspose2d(
147
+ in_channels=in_channels,
148
+ out_channels=out_channels,
149
+ kernel_size=(3, 3),
150
+ stride=stride,
151
+ padding=(1, 1),
152
+ output_padding=out_padding,
153
+ bias=False,
154
+ ),
155
+ nn.BatchNorm2d(out_channels, momentum=momentum),
156
+ nn.ReLU(),
157
+ )
158
+ self.conv2 = nn.ModuleList()
159
+ self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
160
+ for i in range(n_blocks - 1):
161
+ self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
162
+
163
+ def forward(self, x, concat_tensor):
164
+ x = self.conv1(x)
165
+ x = torch.cat((x, concat_tensor), dim=1)
166
+ for i in range(self.n_blocks):
167
+ x = self.conv2[i](x)
168
+ return x
169
+
170
+
171
+ class Decoder(nn.Module):
172
+ def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
173
+ super(Decoder, self).__init__()
174
+ self.layers = nn.ModuleList()
175
+ self.n_decoders = n_decoders
176
+ for i in range(self.n_decoders):
177
+ out_channels = in_channels // 2
178
+ self.layers.append(
179
+ ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
180
+ )
181
+ in_channels = out_channels
182
+
183
+ def forward(self, x, concat_tensors):
184
+ for i in range(self.n_decoders):
185
+ x = self.layers[i](x, concat_tensors[-1 - i])
186
+ return x
187
+
188
+
189
+ class DeepUnet(nn.Module):
190
+ def __init__(
191
+ self,
192
+ kernel_size,
193
+ n_blocks,
194
+ en_de_layers=5,
195
+ inter_layers=4,
196
+ in_channels=1,
197
+ en_out_channels=16,
198
+ ):
199
+ super(DeepUnet, self).__init__()
200
+ self.encoder = Encoder(
201
+ in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
202
+ )
203
+ self.intermediate = Intermediate(
204
+ self.encoder.out_channel // 2,
205
+ self.encoder.out_channel,
206
+ inter_layers,
207
+ n_blocks,
208
+ )
209
+ self.decoder = Decoder(
210
+ self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
211
+ )
212
+
213
+ def forward(self, x):
214
+ x, concat_tensors = self.encoder(x)
215
+ x = self.intermediate(x)
216
+ x = self.decoder(x, concat_tensors)
217
+ return x
218
+
219
+
220
+ class E2E(nn.Module):
221
+ def __init__(
222
+ self,
223
+ n_blocks,
224
+ n_gru,
225
+ kernel_size,
226
+ en_de_layers=5,
227
+ inter_layers=4,
228
+ in_channels=1,
229
+ en_out_channels=16,
230
+ ):
231
+ super(E2E, self).__init__()
232
+ self.unet = DeepUnet(
233
+ kernel_size,
234
+ n_blocks,
235
+ en_de_layers,
236
+ inter_layers,
237
+ in_channels,
238
+ en_out_channels,
239
+ )
240
+ self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
241
+ if n_gru:
242
+ self.fc = nn.Sequential(
243
+ BiGRU(3 * 128, 256, n_gru),
244
+ nn.Linear(512, 360),
245
+ nn.Dropout(0.25),
246
+ nn.Sigmoid(),
247
+ )
248
+ else:
249
+ self.fc = nn.Sequential(
250
+ nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
251
+ )
252
+
253
+ def forward(self, mel):
254
+ mel = mel.transpose(-1, -2).unsqueeze(1)
255
+ x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
256
+ x = self.fc(x)
257
+ return x
258
+
259
+
260
+ from librosa.filters import mel
261
+
262
+
263
+ class MelSpectrogram(torch.nn.Module):
264
+ def __init__(
265
+ self,
266
+ is_half,
267
+ n_mel_channels,
268
+ sampling_rate,
269
+ win_length,
270
+ hop_length,
271
+ n_fft=None,
272
+ mel_fmin=0,
273
+ mel_fmax=None,
274
+ clamp=1e-5,
275
+ ):
276
+ super().__init__()
277
+ n_fft = win_length if n_fft is None else n_fft
278
+ self.hann_window = {}
279
+ mel_basis = mel(
280
+ sr=sampling_rate,
281
+ n_fft=n_fft,
282
+ n_mels=n_mel_channels,
283
+ fmin=mel_fmin,
284
+ fmax=mel_fmax,
285
+ htk=True,
286
+ )
287
+ mel_basis = torch.from_numpy(mel_basis).float()
288
+ self.register_buffer("mel_basis", mel_basis)
289
+ self.n_fft = win_length if n_fft is None else n_fft
290
+ self.hop_length = hop_length
291
+ self.win_length = win_length
292
+ self.sampling_rate = sampling_rate
293
+ self.n_mel_channels = n_mel_channels
294
+ self.clamp = clamp
295
+ self.is_half = is_half
296
+
297
+ def forward(self, audio, keyshift=0, speed=1, center=True):
298
+ factor = 2 ** (keyshift / 12)
299
+ n_fft_new = int(np.round(self.n_fft * factor))
300
+ win_length_new = int(np.round(self.win_length * factor))
301
+ hop_length_new = int(np.round(self.hop_length * speed))
302
+ keyshift_key = str(keyshift) + "_" + str(audio.device)
303
+ if keyshift_key not in self.hann_window:
304
+ self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
305
+ audio.device
306
+ )
307
+ fft = torch.stft(
308
+ audio,
309
+ n_fft=n_fft_new,
310
+ hop_length=hop_length_new,
311
+ win_length=win_length_new,
312
+ window=self.hann_window[keyshift_key],
313
+ center=center,
314
+ return_complex=True,
315
+ )
316
+ magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
317
+ if keyshift != 0:
318
+ size = self.n_fft // 2 + 1
319
+ resize = magnitude.size(1)
320
+ if resize < size:
321
+ magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
322
+ magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
323
+ mel_output = torch.matmul(self.mel_basis, magnitude)
324
+ if self.is_half == True:
325
+ mel_output = mel_output.half()
326
+ log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
327
+ return log_mel_spec
328
+
329
+
330
+ class RMVPE:
331
+ def __init__(self, model_path, is_half, device=None):
332
+ self.resample_kernel = {}
333
+ model = E2E(4, 1, (2, 2))
334
+ ckpt = torch.load(model_path, map_location="cpu")
335
+ model.load_state_dict(ckpt)
336
+ model.eval()
337
+ if is_half == True:
338
+ model = model.half()
339
+ self.model = model
340
+ self.resample_kernel = {}
341
+ self.is_half = is_half
342
+ if device is None:
343
+ device = "cuda" if torch.cuda.is_available() else "cpu"
344
+ self.device = device
345
+ self.mel_extractor = MelSpectrogram(
346
+ is_half, 128, 16000, 1024, 160, None, 30, 8000
347
+ ).to(device)
348
+ self.model = self.model.to(device)
349
+ cents_mapping = 20 * np.arange(360) + 1997.3794084376191
350
+ self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
351
+
352
+ def mel2hidden(self, mel):
353
+ with torch.no_grad():
354
+ n_frames = mel.shape[-1]
355
+ mel = F.pad(
356
+ mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
357
+ )
358
+ hidden = self.model(mel)
359
+ return hidden[:, :n_frames]
360
+
361
+ def decode(self, hidden, thred=0.03):
362
+ cents_pred = self.to_local_average_cents(hidden, thred=thred)
363
+ f0 = 10 * (2 ** (cents_pred / 1200))
364
+ f0[f0 == 10] = 0
365
+ # f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
366
+ return f0
367
+
368
+ def infer_from_audio(self, audio, thred=0.03):
369
+ audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
370
+ # torch.cuda.synchronize()
371
+ # t0=ttime()
372
+ mel = self.mel_extractor(audio, center=True)
373
+ # torch.cuda.synchronize()
374
+ # t1=ttime()
375
+ hidden = self.mel2hidden(mel)
376
+ # torch.cuda.synchronize()
377
+ # t2=ttime()
378
+ hidden = hidden.squeeze(0).cpu().numpy()
379
+ if self.is_half == True:
380
+ hidden = hidden.astype("float32")
381
+ f0 = self.decode(hidden, thred=thred)
382
+ # torch.cuda.synchronize()
383
+ # t3=ttime()
384
+ # print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
385
+ return f0
386
+
387
+ def to_local_average_cents(self, salience, thred=0.05):
388
+ # t0 = ttime()
389
+ center = np.argmax(salience, axis=1) # 帧长#index
390
+ salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
391
+ # t1 = ttime()
392
+ center += 4
393
+ todo_salience = []
394
+ todo_cents_mapping = []
395
+ starts = center - 4
396
+ ends = center + 5
397
+ for idx in range(salience.shape[0]):
398
+ todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
399
+ todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
400
+ # t2 = ttime()
401
+ todo_salience = np.array(todo_salience) # 帧长,9
402
+ todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
403
+ product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
404
+ weight_sum = np.sum(todo_salience, 1) # 帧长
405
+ devided = product_sum / weight_sum # 帧长
406
+ # t3 = ttime()
407
+ maxx = np.max(salience, axis=1) # 帧长
408
+ devided[maxx <= thred] = 0
409
+ # t4 = ttime()
410
+ # print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
411
+ return devided
412
+
413
+
414
+ # if __name__ == '__main__':
415
+ # audio, sampling_rate = sf.read("卢本伟语录~1.wav")
416
+ # if len(audio.shape) > 1:
417
+ # audio = librosa.to_mono(audio.transpose(1, 0))
418
+ # audio_bak = audio.copy()
419
+ # if sampling_rate != 16000:
420
+ # audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
421
+ # model_path = "/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/test-RMVPE/weights/rmvpe_llc_half.pt"
422
+ # thred = 0.03 # 0.01
423
+ # device = 'cuda' if torch.cuda.is_available() else 'cpu'
424
+ # rmvpe = RMVPE(model_path,is_half=False, device=device)
425
+ # t0=ttime()
426
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
427
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
428
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
429
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
430
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
431
+ # t1=ttime()
432
+ # print(f0.shape,t1-t0)
vc_infer_pipeline.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np, parselmouth, torch, pdb, sys, os
2
+ from time import time as ttime
3
+ import torch.nn.functional as F
4
+ import scipy.signal as signal
5
+ import pyworld, os, traceback, faiss, librosa, torchcrepe
6
+ from scipy import signal
7
+ from functools import lru_cache
8
+
9
+ now_dir = os.getcwd()
10
+ sys.path.append(now_dir)
11
+
12
+ bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
13
+
14
+ input_audio_path2wav = {}
15
+
16
+
17
+ @lru_cache
18
+ def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
19
+ audio = input_audio_path2wav[input_audio_path]
20
+ f0, t = pyworld.harvest(
21
+ audio,
22
+ fs=fs,
23
+ f0_ceil=f0max,
24
+ f0_floor=f0min,
25
+ frame_period=frame_period,
26
+ )
27
+ f0 = pyworld.stonemask(audio, f0, t, fs)
28
+ return f0
29
+
30
+
31
+ def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
32
+ # print(data1.max(),data2.max())
33
+ rms1 = librosa.feature.rms(
34
+ y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
35
+ ) # 每半秒一个点
36
+ rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
37
+ rms1 = torch.from_numpy(rms1)
38
+ rms1 = F.interpolate(
39
+ rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
40
+ ).squeeze()
41
+ rms2 = torch.from_numpy(rms2)
42
+ rms2 = F.interpolate(
43
+ rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
44
+ ).squeeze()
45
+ rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
46
+ data2 *= (
47
+ torch.pow(rms1, torch.tensor(1 - rate))
48
+ * torch.pow(rms2, torch.tensor(rate - 1))
49
+ ).numpy()
50
+ return data2
51
+
52
+
53
+ class VC(object):
54
+ def __init__(self, tgt_sr, config):
55
+ self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
56
+ config.x_pad,
57
+ config.x_query,
58
+ config.x_center,
59
+ config.x_max,
60
+ config.is_half,
61
+ )
62
+ self.sr = 16000 # hubert输入采样率
63
+ self.window = 160 # 每帧点数
64
+ self.t_pad = self.sr * self.x_pad # 每条前后pad时间
65
+ self.t_pad_tgt = tgt_sr * self.x_pad
66
+ self.t_pad2 = self.t_pad * 2
67
+ self.t_query = self.sr * self.x_query # 查询切点前后查询时间
68
+ self.t_center = self.sr * self.x_center # 查询切点位置
69
+ self.t_max = self.sr * self.x_max # 免查询时长阈值
70
+ self.device = config.device
71
+
72
+ def get_f0(
73
+ self,
74
+ input_audio_path,
75
+ x,
76
+ p_len,
77
+ f0_up_key,
78
+ f0_method,
79
+ filter_radius,
80
+ inp_f0=None,
81
+ ):
82
+ global input_audio_path2wav
83
+ time_step = self.window / self.sr * 1000
84
+ f0_min = 50
85
+ f0_max = 1100
86
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
87
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
88
+ if f0_method == "pm":
89
+ f0 = (
90
+ parselmouth.Sound(x, self.sr)
91
+ .to_pitch_ac(
92
+ time_step=time_step / 1000,
93
+ voicing_threshold=0.6,
94
+ pitch_floor=f0_min,
95
+ pitch_ceiling=f0_max,
96
+ )
97
+ .selected_array["frequency"]
98
+ )
99
+ pad_size = (p_len - len(f0) + 1) // 2
100
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
101
+ f0 = np.pad(
102
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
103
+ )
104
+ elif f0_method == "harvest":
105
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
106
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
107
+ if filter_radius > 2:
108
+ f0 = signal.medfilt(f0, 3)
109
+ elif f0_method == "crepe":
110
+ model = "full"
111
+ # Pick a batch size that doesn't cause memory errors on your gpu
112
+ batch_size = 512
113
+ # Compute pitch using first gpu
114
+ audio = torch.tensor(np.copy(x))[None].float()
115
+ f0, pd = torchcrepe.predict(
116
+ audio,
117
+ self.sr,
118
+ self.window,
119
+ f0_min,
120
+ f0_max,
121
+ model,
122
+ batch_size=batch_size,
123
+ device=self.device,
124
+ return_periodicity=True,
125
+ )
126
+ pd = torchcrepe.filter.median(pd, 3)
127
+ f0 = torchcrepe.filter.mean(f0, 3)
128
+ f0[pd < 0.1] = 0
129
+ f0 = f0[0].cpu().numpy()
130
+ elif f0_method == "rmvpe":
131
+ if hasattr(self, "model_rmvpe") == False:
132
+ from rmvpe import RMVPE
133
+
134
+ print("loading rmvpe model")
135
+ self.model_rmvpe = RMVPE(
136
+ "rmvpe.pt", is_half=self.is_half, device=self.device
137
+ )
138
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
139
+ f0 *= pow(2, f0_up_key / 12)
140
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
141
+ tf0 = self.sr // self.window # 每秒f0点数
142
+ if inp_f0 is not None:
143
+ delta_t = np.round(
144
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
145
+ ).astype("int16")
146
+ replace_f0 = np.interp(
147
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
148
+ )
149
+ shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
150
+ f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
151
+ :shape
152
+ ]
153
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
154
+ f0bak = f0.copy()
155
+ f0_mel = 1127 * np.log(1 + f0 / 700)
156
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
157
+ f0_mel_max - f0_mel_min
158
+ ) + 1
159
+ f0_mel[f0_mel <= 1] = 1
160
+ f0_mel[f0_mel > 255] = 255
161
+ f0_coarse = np.rint(f0_mel).astype(np.int)
162
+ return f0_coarse, f0bak # 1-0
163
+
164
+ def vc(
165
+ self,
166
+ model,
167
+ net_g,
168
+ sid,
169
+ audio0,
170
+ pitch,
171
+ pitchf,
172
+ times,
173
+ index,
174
+ big_npy,
175
+ index_rate,
176
+ version,
177
+ protect,
178
+ ): # ,file_index,file_big_npy
179
+ feats = torch.from_numpy(audio0)
180
+ if self.is_half:
181
+ feats = feats.half()
182
+ else:
183
+ feats = feats.float()
184
+ if feats.dim() == 2: # double channels
185
+ feats = feats.mean(-1)
186
+ assert feats.dim() == 1, feats.dim()
187
+ feats = feats.view(1, -1)
188
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
189
+
190
+ inputs = {
191
+ "source": feats.to(self.device),
192
+ "padding_mask": padding_mask,
193
+ "output_layer": 9 if version == "v1" else 12,
194
+ }
195
+ t0 = ttime()
196
+ with torch.no_grad():
197
+ logits = model.extract_features(**inputs)
198
+ feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
199
+ if protect < 0.5 and pitch != None and pitchf != None:
200
+ feats0 = feats.clone()
201
+ if (
202
+ isinstance(index, type(None)) == False
203
+ and isinstance(big_npy, type(None)) == False
204
+ and index_rate != 0
205
+ ):
206
+ npy = feats[0].cpu().numpy()
207
+ if self.is_half:
208
+ npy = npy.astype("float32")
209
+
210
+ # _, I = index.search(npy, 1)
211
+ # npy = big_npy[I.squeeze()]
212
+
213
+ score, ix = index.search(npy, k=8)
214
+ weight = np.square(1 / score)
215
+ weight /= weight.sum(axis=1, keepdims=True)
216
+ npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
217
+
218
+ if self.is_half:
219
+ npy = npy.astype("float16")
220
+ feats = (
221
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
222
+ + (1 - index_rate) * feats
223
+ )
224
+
225
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
226
+ if protect < 0.5 and pitch != None and pitchf != None:
227
+ feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
228
+ 0, 2, 1
229
+ )
230
+ t1 = ttime()
231
+ p_len = audio0.shape[0] // self.window
232
+ if feats.shape[1] < p_len:
233
+ p_len = feats.shape[1]
234
+ if pitch != None and pitchf != None:
235
+ pitch = pitch[:, :p_len]
236
+ pitchf = pitchf[:, :p_len]
237
+
238
+ if protect < 0.5 and pitch != None and pitchf != None:
239
+ pitchff = pitchf.clone()
240
+ pitchff[pitchf > 0] = 1
241
+ pitchff[pitchf < 1] = protect
242
+ pitchff = pitchff.unsqueeze(-1)
243
+ feats = feats * pitchff + feats0 * (1 - pitchff)
244
+ feats = feats.to(feats0.dtype)
245
+ p_len = torch.tensor([p_len], device=self.device).long()
246
+ with torch.no_grad():
247
+ if pitch != None and pitchf != None:
248
+ audio1 = (
249
+ (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
250
+ .data.cpu()
251
+ .float()
252
+ .numpy()
253
+ )
254
+ else:
255
+ audio1 = (
256
+ (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
257
+ )
258
+ del feats, p_len, padding_mask
259
+ if torch.cuda.is_available():
260
+ torch.cuda.empty_cache()
261
+ t2 = ttime()
262
+ times[0] += t1 - t0
263
+ times[2] += t2 - t1
264
+ return audio1
265
+
266
+ def pipeline(
267
+ self,
268
+ model,
269
+ net_g,
270
+ sid,
271
+ audio,
272
+ input_audio_path,
273
+ times,
274
+ f0_up_key,
275
+ f0_method,
276
+ file_index,
277
+ # file_big_npy,
278
+ index_rate,
279
+ if_f0,
280
+ filter_radius,
281
+ tgt_sr,
282
+ resample_sr,
283
+ rms_mix_rate,
284
+ version,
285
+ protect,
286
+ f0_file=None,
287
+ ):
288
+ if (
289
+ file_index != ""
290
+ # and file_big_npy != ""
291
+ # and os.path.exists(file_big_npy) == True
292
+ and os.path.exists(file_index) == True
293
+ and index_rate != 0
294
+ ):
295
+ try:
296
+ index = faiss.read_index(file_index)
297
+ # big_npy = np.load(file_big_npy)
298
+ big_npy = index.reconstruct_n(0, index.ntotal)
299
+ except:
300
+ traceback.print_exc()
301
+ index = big_npy = None
302
+ else:
303
+ index = big_npy = None
304
+ audio = signal.filtfilt(bh, ah, audio)
305
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
306
+ opt_ts = []
307
+ if audio_pad.shape[0] > self.t_max:
308
+ audio_sum = np.zeros_like(audio)
309
+ for i in range(self.window):
310
+ audio_sum += audio_pad[i : i - self.window]
311
+ for t in range(self.t_center, audio.shape[0], self.t_center):
312
+ opt_ts.append(
313
+ t
314
+ - self.t_query
315
+ + np.where(
316
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
317
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
318
+ )[0][0]
319
+ )
320
+ s = 0
321
+ audio_opt = []
322
+ t = None
323
+ t1 = ttime()
324
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
325
+ p_len = audio_pad.shape[0] // self.window
326
+ inp_f0 = None
327
+ if hasattr(f0_file, "name") == True:
328
+ try:
329
+ with open(f0_file.name, "r") as f:
330
+ lines = f.read().strip("\n").split("\n")
331
+ inp_f0 = []
332
+ for line in lines:
333
+ inp_f0.append([float(i) for i in line.split(",")])
334
+ inp_f0 = np.array(inp_f0, dtype="float32")
335
+ except:
336
+ traceback.print_exc()
337
+ sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
338
+ pitch, pitchf = None, None
339
+ if if_f0 == 1:
340
+ pitch, pitchf = self.get_f0(
341
+ input_audio_path,
342
+ audio_pad,
343
+ p_len,
344
+ f0_up_key,
345
+ f0_method,
346
+ filter_radius,
347
+ inp_f0,
348
+ )
349
+ pitch = pitch[:p_len]
350
+ pitchf = pitchf[:p_len]
351
+ if self.device == "mps":
352
+ pitchf = pitchf.astype(np.float32)
353
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
354
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
355
+ t2 = ttime()
356
+ times[1] += t2 - t1
357
+ for t in opt_ts:
358
+ t = t // self.window * self.window
359
+ if if_f0 == 1:
360
+ audio_opt.append(
361
+ self.vc(
362
+ model,
363
+ net_g,
364
+ sid,
365
+ audio_pad[s : t + self.t_pad2 + self.window],
366
+ pitch[:, s // self.window : (t + self.t_pad2) // self.window],
367
+ pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
368
+ times,
369
+ index,
370
+ big_npy,
371
+ index_rate,
372
+ version,
373
+ protect,
374
+ )[self.t_pad_tgt : -self.t_pad_tgt]
375
+ )
376
+ else:
377
+ audio_opt.append(
378
+ self.vc(
379
+ model,
380
+ net_g,
381
+ sid,
382
+ audio_pad[s : t + self.t_pad2 + self.window],
383
+ None,
384
+ None,
385
+ times,
386
+ index,
387
+ big_npy,
388
+ index_rate,
389
+ version,
390
+ protect,
391
+ )[self.t_pad_tgt : -self.t_pad_tgt]
392
+ )
393
+ s = t
394
+ if if_f0 == 1:
395
+ audio_opt.append(
396
+ self.vc(
397
+ model,
398
+ net_g,
399
+ sid,
400
+ audio_pad[t:],
401
+ pitch[:, t // self.window :] if t is not None else pitch,
402
+ pitchf[:, t // self.window :] if t is not None else pitchf,
403
+ times,
404
+ index,
405
+ big_npy,
406
+ index_rate,
407
+ version,
408
+ protect,
409
+ )[self.t_pad_tgt : -self.t_pad_tgt]
410
+ )
411
+ else:
412
+ audio_opt.append(
413
+ self.vc(
414
+ model,
415
+ net_g,
416
+ sid,
417
+ audio_pad[t:],
418
+ None,
419
+ None,
420
+ times,
421
+ index,
422
+ big_npy,
423
+ index_rate,
424
+ version,
425
+ protect,
426
+ )[self.t_pad_tgt : -self.t_pad_tgt]
427
+ )
428
+ audio_opt = np.concatenate(audio_opt)
429
+ if rms_mix_rate != 1:
430
+ audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
431
+ if resample_sr >= 16000 and tgt_sr != resample_sr:
432
+ audio_opt = librosa.resample(
433
+ audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
434
+ )
435
+ audio_max = np.abs(audio_opt).max() / 0.99
436
+ max_int16 = 32768
437
+ if audio_max > 1:
438
+ max_int16 /= audio_max
439
+ audio_opt = (audio_opt * max_int16).astype(np.int16)
440
+ del pitch, pitchf, sid
441
+ if torch.cuda.is_available():
442
+ torch.cuda.empty_cache()
443
+ return audio_opt