Spaces:
Running
Running
Krisseck
commited on
Commit
β’
8163dc5
0
Parent(s):
Initial commit
Browse files- .gitignore +2 -0
- IFEval.csv +5 -0
- README.md +13 -0
- app.py +139 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
venv
|
2 |
+
.idea
|
IFEval.csv
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Model,Parameters (B),Repo,Quantization,Final Score,Strict Prompt Score,Strict Inst Score,Loose Prompt Score,Loose Inst Score,Link
|
2 |
+
Llama 3 8B,8,failspy/Meta-Llama-3-8B-Instruct-abliterated-v3-GGUF,Q8_0,0.7589,0.7001,0.7818,0.7394,0.8141,https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3-GGUF
|
3 |
+
Llama 3 8B,8,MaziyarPanahi/Meta-Llama-3-8B-Instruct-GGUF,Q8_0,0.7366,0.6765,0.7614,0.7172,0.7914,https://huggingface.co/MaziyarPanahi/Meta-Llama-3-8B-Instruct-GGUF
|
4 |
+
Mistral 7B v0.3,7,MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF,Q8_0,0.5689,0.4972,0.5983,0.5397,0.6403,https://huggingface.co/MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF
|
5 |
+
Phi 3 Medium 4K,14,bartowski/Phi-3-medium-4k-instruct-GGUF,Q8_0,0.5689,0.4972,0.5983,0.5397,0.6403,https://huggingface.co/bartowski/Phi-3-medium-4k-instruct-GGUF
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: IFEval Leaderboard
|
3 |
+
emoji: π
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.15.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
import argparse
|
3 |
+
import glob
|
4 |
+
import pickle
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
def model_hyperlink(model_name, link):
|
10 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
11 |
+
def load_leaderboard_table_csv(filename, add_hyperlink=True):
|
12 |
+
lines = open(filename).readlines()
|
13 |
+
heads = [v.strip() for v in lines[0].split(",")]
|
14 |
+
rows = []
|
15 |
+
for i in range(1, len(lines)):
|
16 |
+
row = [v.strip() for v in lines[i].split(",")]
|
17 |
+
for j in range(len(heads)):
|
18 |
+
item = {}
|
19 |
+
for h, v in zip(heads, row):
|
20 |
+
if "Score" in h:
|
21 |
+
item[h] = float(v)
|
22 |
+
elif h != "Model" and h != "Parameters (B)" and h != "Repo" and h != "Quantization" and h != "Link":
|
23 |
+
item[h] = int(v)
|
24 |
+
else:
|
25 |
+
item[h] = v
|
26 |
+
if add_hyperlink:
|
27 |
+
item["Repo"] = model_hyperlink(item["Repo"], item["Link"])
|
28 |
+
rows.append(item)
|
29 |
+
return rows
|
30 |
+
|
31 |
+
def get_arena_table(model_table_df):
|
32 |
+
# sort by rating
|
33 |
+
model_table_df = model_table_df.sort_values(by=["Final Score"], ascending=False)
|
34 |
+
values = []
|
35 |
+
for i in range(len(model_table_df)):
|
36 |
+
row = []
|
37 |
+
model_key = model_table_df.index[i]
|
38 |
+
model_name = model_table_df["Model"].values[model_key]
|
39 |
+
# rank
|
40 |
+
row.append(i + 1)
|
41 |
+
# model display name
|
42 |
+
row.append(model_name)
|
43 |
+
|
44 |
+
row.append(
|
45 |
+
model_table_df["Parameters (B)"].values[model_key]
|
46 |
+
)
|
47 |
+
row.append(
|
48 |
+
model_table_df["Repo"].values[model_key]
|
49 |
+
)
|
50 |
+
row.append(
|
51 |
+
model_table_df["Quantization"].values[model_key]
|
52 |
+
)
|
53 |
+
row.append(
|
54 |
+
model_table_df["Final Score"].values[model_key]
|
55 |
+
)
|
56 |
+
row.append(
|
57 |
+
model_table_df["Strict Prompt Score"].values[model_key]
|
58 |
+
)
|
59 |
+
row.append(
|
60 |
+
model_table_df["Strict Inst Score"].values[model_key]
|
61 |
+
)
|
62 |
+
row.append(
|
63 |
+
model_table_df["Loose Prompt Score"].values[model_key]
|
64 |
+
)
|
65 |
+
row.append(
|
66 |
+
model_table_df["Loose Inst Score"].values[model_key]
|
67 |
+
)
|
68 |
+
values.append(row)
|
69 |
+
return values
|
70 |
+
|
71 |
+
def build_leaderboard_tab(leaderboard_table_file, show_plot=False):
|
72 |
+
if leaderboard_table_file:
|
73 |
+
data = load_leaderboard_table_csv(leaderboard_table_file)
|
74 |
+
model_table_df = pd.DataFrame(data)
|
75 |
+
md_head = f"""
|
76 |
+
# π IFEval Leaderboard
|
77 |
+
"""
|
78 |
+
gr.Markdown(md_head, elem_id="leaderboard_markdown")
|
79 |
+
with gr.Tabs() as tabs:
|
80 |
+
# arena table
|
81 |
+
arena_table_vals = get_arena_table(model_table_df)
|
82 |
+
with gr.Tab("IFEval", id=0):
|
83 |
+
md = "Leaderboard for various Large Language Models measured with IFEval benchmark.\n\n[IFEval](https://github.com/google-research/google-research/tree/master/instruction_following_eval) is a straightforward and easy-to-reproduce evaluation benchmark. It focuses on a set of \"verifiable instructions\" such as \"write in more than 400 words\" and \"mention the keyword of AI at least 3 times\". We identified 25 types of those verifiable instructions and constructed around 500 prompts, with each prompt containing one or more verifiable instructions. \n\nTest ran with `lm-evaluation-harness`. Raw results can be found in the `results` directory. Made by [Kristian Polso](https://polso.info)."
|
84 |
+
gr.Markdown(md, elem_id="leaderboard_markdown")
|
85 |
+
gr.Dataframe(
|
86 |
+
headers=[
|
87 |
+
"Rank",
|
88 |
+
"Model",
|
89 |
+
"Parameters (B)",
|
90 |
+
"Repo",
|
91 |
+
"Quantization",
|
92 |
+
"Final Score",
|
93 |
+
"Strict Prompt Score",
|
94 |
+
"Strict Inst Score",
|
95 |
+
"Loose Prompt Score",
|
96 |
+
"Loose Inst Score"
|
97 |
+
],
|
98 |
+
datatype=[
|
99 |
+
"number",
|
100 |
+
"str",
|
101 |
+
"number",
|
102 |
+
"markdown",
|
103 |
+
"str",
|
104 |
+
"number",
|
105 |
+
"number",
|
106 |
+
"number",
|
107 |
+
"number",
|
108 |
+
"number"
|
109 |
+
],
|
110 |
+
value=arena_table_vals,
|
111 |
+
elem_id="arena_leaderboard_dataframe",
|
112 |
+
height=700,
|
113 |
+
column_widths=[50, 150, 100, 150, 100, 100, 100, 100, 100, 100],
|
114 |
+
wrap=True,
|
115 |
+
)
|
116 |
+
|
117 |
+
else:
|
118 |
+
pass
|
119 |
+
|
120 |
+
def build_demo(leaderboard_table_file):
|
121 |
+
text_size = gr.themes.sizes.text_lg
|
122 |
+
|
123 |
+
with gr.Blocks(
|
124 |
+
title="IFEval Leaderboard",
|
125 |
+
theme=gr.themes.Base(text_size=text_size),
|
126 |
+
) as demo:
|
127 |
+
leader_components = build_leaderboard_tab(
|
128 |
+
leaderboard_table_file, show_plot=True
|
129 |
+
)
|
130 |
+
return demo
|
131 |
+
|
132 |
+
if __name__ == "__main__":
|
133 |
+
parser = argparse.ArgumentParser()
|
134 |
+
parser.add_argument("--share", action="store_true")
|
135 |
+
parser.add_argument("--IFEval_file", type=str, default="./IFEval.csv")
|
136 |
+
args = parser.parse_args()
|
137 |
+
|
138 |
+
demo = build_demo(args.IFEval_file)
|
139 |
+
demo.launch()
|