Spaces:
Runtime error
Runtime error
KushwanthK
commited on
Commit
•
24a430f
1
Parent(s):
a66244c
Update app.py
Browse files
app.py
CHANGED
@@ -88,7 +88,7 @@ def get_pinecone_semantic_index(pinecone):
|
|
88 |
|
89 |
|
90 |
def prompt_engineer(text, longtext, query):
|
91 |
-
|
92 |
write a concise summary of the following text delimited by triple backquotes.
|
93 |
return your response in bullet points which convers the key points of the text.
|
94 |
|
@@ -105,37 +105,39 @@ def prompt_engineer(text, longtext, query):
|
|
105 |
# Generate the summary
|
106 |
# summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"]
|
107 |
|
108 |
-
try:
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
except Exception as e:
|
114 |
-
|
115 |
-
|
116 |
-
from langchain.chains.combine_documents import create_stuff_documents_chain
|
117 |
-
from langchain.chains.llm import LLMChain
|
118 |
-
from langchain_core.prompts import ChatPromptTemplate
|
119 |
-
from langchain_core.documents import Document
|
120 |
-
|
121 |
-
docs = Document(page_content=longtext, metadata={"source": "pinecone"})
|
122 |
-
st.write(docs)
|
123 |
-
# Define prompt
|
124 |
-
prompt = ChatPromptTemplate.from_messages(
|
125 |
-
|
126 |
-
)
|
127 |
|
128 |
-
# Instantiate chain
|
129 |
-
chain = create_stuff_documents_chain(sllm, prompt)
|
130 |
|
131 |
-
# Invoke chain
|
132 |
-
summary = chain.invoke({"context": [docs]})
|
|
|
|
|
|
|
133 |
|
134 |
with st.sidebar:
|
135 |
st.divider()
|
136 |
st.markdown("*:red[Text Summary Generation]* from above Top 5 **:green[similarity search results]**.")
|
137 |
-
|
138 |
-
st.divider()
|
139 |
|
140 |
GENERATION_PROMPT_TEMPLATE = """
|
141 |
Instructions:
|
@@ -162,6 +164,9 @@ def prompt_engineer(text, longtext, query):
|
|
162 |
repo_id="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"temperature": 0, "task":"text-generation"}
|
163 |
)
|
164 |
st.write("GEN llm connection started..")
|
|
|
|
|
|
|
165 |
response_text = llm.invoke(prompt)
|
166 |
escaped_query = re.escape(query)
|
167 |
result = re.split(f'Answer the question based on the above context: {escaped_query}\n',response_text)[-1]
|
|
|
88 |
|
89 |
|
90 |
def prompt_engineer(text, longtext, query):
|
91 |
+
summary_prompt_inst = """
|
92 |
write a concise summary of the following text delimited by triple backquotes.
|
93 |
return your response in bullet points which convers the key points of the text.
|
94 |
|
|
|
105 |
# Generate the summary
|
106 |
# summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"]
|
107 |
|
108 |
+
# try:
|
109 |
+
# sllm = HuggingFaceHub(
|
110 |
+
# repo_id="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"temperature": 0.1, "max_new_tokens": 256, "task":"summarization"}
|
111 |
+
# )
|
112 |
+
# st.write("Summary Chat llm connection started..")
|
113 |
+
# except Exception as e:
|
114 |
+
# st.error(f"Error invoke: {e}")
|
115 |
+
|
116 |
+
# from langchain.chains.combine_documents import create_stuff_documents_chain
|
117 |
+
# from langchain.chains.llm import LLMChain
|
118 |
+
# from langchain_core.prompts import ChatPromptTemplate
|
119 |
+
# from langchain_core.documents import Document
|
120 |
+
|
121 |
+
# docs = Document(page_content=longtext, metadata={"source": "pinecone"})
|
122 |
+
# st.write(docs)
|
123 |
+
# # Define prompt
|
124 |
+
# prompt = ChatPromptTemplate.from_messages(
|
125 |
+
# [("system", summary_prompt_template)]
|
126 |
+
# )
|
127 |
|
128 |
+
# # Instantiate chain
|
129 |
+
# chain = create_stuff_documents_chain(sllm, prompt)
|
130 |
|
131 |
+
# # Invoke chain
|
132 |
+
# summary = chain.invoke({"context": [docs]})
|
133 |
+
|
134 |
+
summary_prompt_template = ChatPromptTemplate.from_template(summary_prompt_inst)
|
135 |
+
summary_prompt = summary_prompt_template.format(context=longtext, question="generate summary of text?")
|
136 |
|
137 |
with st.sidebar:
|
138 |
st.divider()
|
139 |
st.markdown("*:red[Text Summary Generation]* from above Top 5 **:green[similarity search results]**.")
|
140 |
+
|
|
|
141 |
|
142 |
GENERATION_PROMPT_TEMPLATE = """
|
143 |
Instructions:
|
|
|
164 |
repo_id="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"temperature": 0, "task":"text-generation"}
|
165 |
)
|
166 |
st.write("GEN llm connection started..")
|
167 |
+
summary = llm.invoke(summary_prompt)
|
168 |
+
st.write(summary)
|
169 |
+
st.divider()
|
170 |
response_text = llm.invoke(prompt)
|
171 |
escaped_query = re.escape(query)
|
172 |
result = re.split(f'Answer the question based on the above context: {escaped_query}\n',response_text)[-1]
|