File size: 86,697 Bytes
f27460e
482bc30
94b8cb6
5609a56
756ea61
cb022bb
 
f672e00
 
 
 
 
43647c4
 
 
cce05a1
 
 
43647c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd998d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f672e00
43647c4
 
 
 
f672e00
 
 
 
 
 
 
cce05a1
43647c4
 
cd998d9
43647c4
 
 
 
 
cd998d9
43647c4
cd998d9
 
 
43647c4
f672e00
cd998d9
f672e00
 
 
 
 
 
 
 
 
cd998d9
f672e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd998d9
43647c4
cd998d9
 
f672e00
 
 
 
 
 
 
 
 
 
 
 
cd998d9
 
 
 
 
 
 
 
 
 
 
 
7e4c949
cd998d9
7e4c949
 
 
cd998d9
 
7e4c949
 
 
cd998d9
7e4c949
cd998d9
 
f672e00
 
f27460e
cce05a1
286206e
 
cce05a1
 
f27460e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
482bc30
 
cce05a1
482bc30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed49cfb
482bc30
ed49cfb
482bc30
 
 
 
 
879ad5c
482bc30
a075dd7
56ffade
 
482bc30
879ad5c
 
ed49cfb
0e03629
 
879ad5c
 
a075dd7
 
482bc30
 
8eafcce
482bc30
 
 
 
 
 
8eafcce
482bc30
8eafcce
 
16eaa95
482bc30
5609a56
 
 
 
 
 
 
0e03629
 
 
 
 
 
 
5609a56
 
0e03629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5609a56
 
 
ad97da8
 
9cb6ce3
ad97da8
 
 
9cb6ce3
ad97da8
 
 
756ea61
ed49cfb
9cb6ce3
 
ed49cfb
9cb6ce3
 
ed49cfb
9cb6ce3
 
ed49cfb
9cb6ce3
756ea61
 
 
 
ad97da8
a4229ac
9cb6ce3
a4229ac
 
9cb6ce3
756ea61
 
 
 
 
9cb6ce3
 
 
 
 
e1c091b
9cb6ce3
a4229ac
9cb6ce3
 
ad97da8
756ea61
76fdd6c
756ea61
 
 
74a1a54
756ea61
 
 
 
 
 
 
 
5609a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eafcce
5609a56
 
 
 
 
 
 
482bc30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce05a1
482bc30
 
 
 
 
94b8cb6
482bc30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b8cb6
 
 
 
 
482bc30
 
94b8cb6
482bc30
94b8cb6
 
482bc30
 
 
 
94b8cb6
 
 
482bc30
 
94b8cb6
482bc30
94b8cb6
 
 
 
 
 
 
482bc30
 
 
 
 
 
 
 
 
 
 
 
94b8cb6
 
d9f8b8b
 
 
 
 
482bc30
94b8cb6
 
482bc30
 
 
d9f8b8b
482bc30
 
 
 
94b8cb6
482bc30
 
d9f8b8b
 
 
 
 
482bc30
756ea61
94b8cb6
cbac46a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
984e889
 
cbac46a
 
 
 
 
 
 
 
 
6cfe6de
cbac46a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b8cb6
8937fd4
 
 
 
 
482bc30
 
 
 
cb022bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce05a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f27460e
2c366e0
f61b6ea
a075dd7
8d48459
a075dd7
ad97da8
a075dd7
e578809
4dd165c
286206e
 
 
 
 
 
 
 
 
 
 
 
cce05a1
cd998d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286206e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f672e00
286206e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f672e00
3dc2230
fdeec3f
 
 
 
cce05a1
 
 
 
 
 
 
 
 
 
 
 
fdeec3f
 
 
 
cce05a1
fdeec3f
 
cce05a1
fdeec3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b602b14
fdeec3f
 
 
 
 
 
 
 
b602b14
fdeec3f
 
d1a28c0
fdeec3f
 
d1a28c0
3dc2230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c26e86
 
43647c4
9c26e86
 
4dd165c
9c26e86
 
 
 
cce05a1
743b06e
9c26e86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
743b06e
fdeec3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b602b14
9c26e86
b602b14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb022bb
b602b14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8937fd4
b602b14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb022bb
b602b14
 
0e03629
 
b602b14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d211c9
b602b14
 
 
 
 
 
 
 
 
0e03629
 
b602b14
 
 
 
 
 
 
 
39f526c
b602b14
 
 
 
 
 
 
 
 
 
f8bbf62
b602b14
 
 
 
 
 
 
 
 
 
4dd165c
b602b14
cce05a1
b602b14
4dd165c
 
 
 
 
 
 
b602b14
 
 
743b06e
b602b14
9c26e86
 
 
 
b602b14
43647c4
 
cce05a1
43647c4
 
 
 
 
cce05a1
43647c4
 
 
b602b14
4dd165c
f672e00
 
43647c4
 
d1a28c0
 
 
3dc2230
 
43647c4
f672e00
 
fdeec3f
4dd165c
f672e00
d1a28c0
b602b14
 
 
3dc2230
b602b14
fdeec3f
9c26e86
 
b602b14
 
 
 
 
 
cce05a1
d1a28c0
 
fdeec3f
3dc2230
d1a28c0
 
 
 
f672e00
b602b14
9c26e86
b602b14
 
9c26e86
d1a28c0
 
 
 
9c26e86
 
cce05a1
d1a28c0
3dc2230
fdeec3f
d1a28c0
 
 
 
9c26e86
 
 
 
 
 
b602b14
 
cce05a1
4dd165c
d1a28c0
4dd165c
 
 
b602b14
d1a28c0
 
b602b14
 
 
 
 
 
 
 
 
 
 
 
 
142dcfb
b602b14
 
21ccdf9
142dcfb
d1a28c0
142dcfb
9c26e86
 
 
29857f3
cb022bb
b19b854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
482bc30
 
9c26e86
b826437
4dd165c
9c26e86
73be982
c6fa314
b19b854
 
 
c6fa314
 
a075dd7
 
c6fa314
 
 
 
ad97da8
 
 
 
c6fa314
 
ad97da8
 
482bc30
b78075f
b826437
09ce032
83e773c
09ce032
83e773c
cce05a1
f27460e
f672e00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
import gradio as gr
import random
import json
import re
import os
import shutil
from PIL import Image
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import time
import psutil
from sentence_transformers import SentenceTransformer

#Imported Long Variables - comment for each move to search
from relatively_constant_variables import *

# # Initialize the zero tensor on CUDA
# zero = torch.Tensor([0]).cuda()
# print(zero.device)  # This will print 'cpu' outside the @spaces.GPU decorated function

# # Load the model and tokenizer
# llmguide_model = AutoModelForCausalLM.from_pretrained(
#     "Qwen/Qwen2-0.5B-Instruct",
#     torch_dtype="auto",
#     device_map="auto"
# )
# llmguide_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")

# @spaces.GPU
# def llmguide_generate_response(prompt, stream=False):
#     print(zero.device)  # This will print 'cuda:0' inside the @spaces.GPU decorated function
    
#     messages = [
#         {"role": "system", "content": "You are a helpful assistant."},
#         {"role": "user", "content": prompt}
#     ]
#     text = llmguide_tokenizer.apply_chat_template(
#         messages,
#         tokenize=False,
#         add_generation_prompt=True
#     )
#     model_inputs = llmguide_tokenizer([text], return_tensors="pt").to(zero.device)

#     start_time = time.time()
#     total_tokens = 0

#     if stream:
#         streamer = TextIteratorStreamer(llmguide_tokenizer, skip_special_tokens=True)
#         generation_kwargs = dict(
#             model_inputs,
#             streamer=streamer,
#             max_new_tokens=512,
#             temperature=0.7,
#         )
#         thread = Thread(target=llmguide_model.generate, kwargs=generation_kwargs)
#         thread.start()

#         generated_text = ""
#         for new_text in streamer:
#             generated_text += new_text
#             total_tokens += 1
#             current_time = time.time()
#             tokens_per_second = total_tokens / (current_time - start_time)
#             yield generated_text, f"{tokens_per_second:.2f}"
#     else:
#         generated_ids = llmguide_model.generate(
#             model_inputs.input_ids,
#             max_new_tokens=512
#         )
#         generated_ids = [
#             output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
#         ]
#         response = llmguide_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
#         total_tokens = len(generated_ids[0])
#         end_time = time.time()
#         tokens_per_second = total_tokens / (end_time - start_time)
#         yield response, f"{tokens_per_second:.2f}"


#---------
#----------

# # Initialize GPU tensor
# zero = torch.Tensor([0]).cuda()
# print(zero.device)  # This will print 'cpu' outside the @spaces.GPU decorated function

# # Load the embedding model
# embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

# # Load the Qwen model and tokenizer
# llmguide_model = AutoModelForCausalLM.from_pretrained(
#     "Qwen/Qwen2-0.5B-Instruct",
#     torch_dtype="auto",
#     device_map="auto"
# )
# llmguide_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")

# # Sample knowledge base (replace with your own data)
# knowledge_base = [
#     "The capital of France is Paris.",
#     "Python is a popular programming language.",
#     "Machine learning is a subset of artificial intelligence.",
#     "The Earth orbits around the Sun.",
#     "orbits are a group of fans of a music group"
# ]

# # Create embeddings for the knowledge base
# knowledge_base_embeddings = embedding_model.encode(knowledge_base)

# def retrieve(query, k=2):
#     query_embedding = embedding_model.encode([query])
#     similarities = torch.nn.functional.cosine_similarity(torch.tensor(query_embedding), torch.tensor(knowledge_base_embeddings))
#     top_k_indices = similarities.argsort(descending=True)[:k]
#     return [knowledge_base[i] for i in top_k_indices]

# def get_resource_usage():
#     ram_usage = psutil.virtual_memory().percent
#     gpu_memory_allocated = torch.cuda.memory_allocated() / (1024 ** 3)  # Convert to GB
#     gpu_memory_reserved = torch.cuda.memory_reserved() / (1024 ** 3)  # Convert to GB
#     return f"RAM Usage: {ram_usage:.2f}%, GPU Memory Allocated: {gpu_memory_allocated:.2f}GB, GPU Memory Reserved: {gpu_memory_reserved:.2f}GB"

# @spaces.GPU
# def llmguide_generate_response(prompt, stream=False):
#     print(zero.device)  # This will print 'cuda:0' inside the @spaces.GPU decorated function
    
#     messages = [
#         {"role": "system", "content": "You are a helpful assistant."},
#         {"role": "user", "content": prompt}
#     ]
#     text = llmguide_tokenizer.apply_chat_template(
#         messages,
#         tokenize=False,
#         add_generation_prompt=True
#     )
#     model_inputs = llmguide_tokenizer([text], return_tensors="pt").to(zero.device)

#     start_time = time.time()
#     total_tokens = 0

#     if stream:
#         streamer = TextIteratorStreamer(llmguide_tokenizer, skip_special_tokens=True)
#         generation_kwargs = dict(
#             model_inputs,
#             streamer=streamer,
#             max_new_tokens=512,
#             temperature=0.7,
#         )
#         thread = Thread(target=llmguide_model.generate, kwargs=generation_kwargs)
#         thread.start()

#         generated_text = ""
#         for new_text in streamer:
#             generated_text += new_text
#             total_tokens += 1
#             current_time = time.time()
#             tokens_per_second = total_tokens / (current_time - start_time)
#             yield generated_text, f"{tokens_per_second:.2f}", ""

#         resource_usage = get_resource_usage()
#         yield generated_text, f"{tokens_per_second:.2f}", resource_usage
#     else:
#         generated_ids = llmguide_model.generate(
#             model_inputs.input_ids,
#             max_new_tokens=512
#         )
#         generated_ids = [
#             output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
#         ]
#         response = llmguide_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
#         total_tokens = len(generated_ids[0])
#         end_time = time.time()
#         tokens_per_second = total_tokens / (end_time - start_time)
#         resource_usage = get_resource_usage()
#         yield response, f"{tokens_per_second:.2f}", resource_usage

# def rag(query, stream=False):
#     retrieved_docs = retrieve(query)
#     context = " ".join(retrieved_docs)
#     prompt = f"Context: {context}\nQuestion: {query}\nAnswer:"
    
#     generator = llmguide_generate_response(prompt, stream)
    
#     if stream:
#         def stream_output():
#             for generated_text, tokens_per_second, ram_usage in generator:
#                 yield generated_text, tokens_per_second, ram_usage
#         return stream_output()
#     else:
#         # For non-streaming, we just need to get the final output
#         for generated_text, tokens_per_second, ram_usage in generator:
#             pass  # This will iterate to the last yield
#         return generated_text, tokens_per_second, ram_usage


# Load the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

# Load the Qwen model and tokenizer
llmguide_model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen2-0.5B-Instruct",
    torch_dtype="auto",
    device_map="auto"
)
llmguide_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")

#import knowledge_base from relatively_constant_variables

# Create embeddings for the knowledge base
knowledge_base_embeddings = embedding_model.encode([doc["content"] for doc in knowledge_base])

def retrieve(query, k=2):
    query_embedding = embedding_model.encode([query])
    similarities = torch.nn.functional.cosine_similarity(torch.tensor(query_embedding), torch.tensor(knowledge_base_embeddings))
    top_k_indices = similarities.argsort(descending=True)[:k]
    return [(knowledge_base[i]["content"], knowledge_base[i]["id"]) for i in top_k_indices]

def get_ram_usage():
    ram = psutil.virtual_memory()
    return f"RAM Usage: {ram.percent:.2f}%, Available: {ram.available / (1024 ** 3):.2f}GB, Total: {ram.total / (1024 ** 3):.2f}GB"

@spaces.GPU
def llmguide_generate_response(prompt, doc_ids=None, stream=False):
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt}
    ]
    text = llmguide_tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = llmguide_tokenizer([text], return_tensors="pt").to(llmguide_model.device)

    start_time = time.time()
    total_tokens = 0

    if stream:
        streamer = TextIteratorStreamer(llmguide_tokenizer, skip_special_tokens=True)
        generation_kwargs = dict(
            model_inputs,
            streamer=streamer,
            max_new_tokens=512,
            temperature=0.7,
        )
        thread = Thread(target=llmguide_model.generate, kwargs=generation_kwargs)
        thread.start()

        generated_text = ""
        for new_text in streamer:
            generated_text += new_text
            total_tokens += 1
            current_time = time.time()
            tokens_per_second = total_tokens / (current_time - start_time)
            yield generated_text, f"{tokens_per_second:.2f}", "", ", ".join(doc_ids) if doc_ids else "N/A"

        ram_usage = get_ram_usage()
        yield generated_text, f"{tokens_per_second:.2f}", ram_usage, ", ".join(doc_ids) if doc_ids else "N/A"
    else:
        generated_ids = llmguide_model.generate(
            model_inputs.input_ids,
            max_new_tokens=512
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]
        response = llmguide_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        total_tokens = len(generated_ids[0])
        end_time = time.time()
        tokens_per_second = total_tokens / (end_time - start_time)
        ram_usage = get_ram_usage()
        yield response, f"{tokens_per_second:.2f}", ram_usage, ", ".join(doc_ids) if doc_ids else "N/A"

def process_query(query, use_rag, stream=False):
    if use_rag:
        retrieved_docs = retrieve(query)
        context = " ".join([doc for doc, _ in retrieved_docs])
        doc_ids = [doc_id for _, doc_id in retrieved_docs]
        prompt = f"Context: {context}\nQuestion: {query}\nAnswer:"
    else:
        prompt = query
        doc_ids = None
    
    generator = llmguide_generate_response(prompt, doc_ids, stream)
    
    if stream:
        def stream_output():
            for generated_text, tokens_per_second, ram_usage, doc_references in generator:
                yield generated_text, tokens_per_second, ram_usage, doc_references
        return stream_output()
    else:
        # For non-streaming, we just need to get the final output
        for generated_text, tokens_per_second, ram_usage, doc_references in generator:
            pass  # This will iterate to the last yield
        return generated_text, tokens_per_second, ram_usage, doc_references


#--------------------------------------------------------------------------------------------------------------------------------

#importing FAQAllprompts from relatively_constant_variables

#--------------------------------------------------------------------------------------------------------------------------------

#importing default_config from relatively_constant_variables

# Helper functions to dynamically add items
def add_inventory_item(inventory_items, type, name, description):
    new_item = {"type": type, "name": name, "description": description}
    inventory_items.append(new_item)
    return inventory_items

def add_skill(skills_items, branch, name, learned):
    new_skill = {"branch": branch, "name": name, "learned": learned == 'True'}
    skills_items.append(new_skill)
    return skills_items

def add_objective(objectives_items, id, name, complete):
    new_objective = {"id": id, "name": name, "complete": complete == 'True'}
    objectives_items.append(new_objective)
    return objectives_items

def add_target(targets_items, name, x, y, collisionType, collisiontext):
    new_target = {"name": name, "x": int(x), "y": int(y), "collisionType": collisionType, "collisiontext": collisiontext}
    targets_items.append(new_target)
    return targets_items

#-----------------------------------------------------------------------------------------------------------------------------------

#importing player_engagement_items and story_events from relatively_constant_variables

def pick_random_items(items, n):
    return random.sample(items, n)

def generate_timeline(events, label):
    timeline = []
    for event in events:
        timeline.append((random.randint(1, 100), label, event))
    return timeline

def create_story(timeline):
    story = []
    for entry in timeline:
        if entry[1] == "Story":
            story.append(f"The hero {entry[2].replace('engageBattle', 'engaged in a fierce battle').replace('solveRiddle', 'solved a complex riddle').replace('exploreLocation', 'explored a mysterious location')}.")
        else:
            story.append(f"The player interacted with {entry[2]}.")
    return " ".join(story)

def generate_story_and_timeline(no_ui_timeline_points=10, no_media_timeline_points=5, include_media=True):
    # Pick 10 random UI items
    random_ui_items = pick_random_items(player_engagement_items, no_ui_timeline_points)

    # Generate UI and story timelines
    ui_timeline = generate_timeline(random_ui_items, "UI")
    story_timeline = generate_timeline(story_events, "Story")

    # Initialize merged timeline with UI and story timelines
    merged_timeline = ui_timeline + story_timeline
    no_media_merged_timeline = ui_timeline + story_timeline
    #print(merged_timeline)
    #print(no_media_merged_timeline)

    # Include media-related items if specified
    if include_media:
        media_files = generate_media_file_list(no_media_timeline_points)
        #rendered_media = render_media_with_dropdowns(media_files)
        media_timeline = generate_timeline(media_files, "Media")
        merged_timeline += media_timeline

    print(merged_timeline)

    # Sort the merged timeline based on the random numbers
    merged_timeline.sort(key=lambda x: x[0])
    no_media_merged_timeline.sort(key=lambda x: x[0])

    # Create the story
    story = create_story(merged_timeline)

    # Format the timeline for display
    formatted_timeline = "\n".join([f"{entry[0]}: {entry[1]} - {entry[2]}" for entry in merged_timeline])
    no_media_formatted_timeline = "\n".join([f"{entry[0]}: {entry[1]} - {entry[2]}" for entry in no_media_merged_timeline])

    game_structure_with_media, game_structure_without_media = generate_game_structures(formatted_timeline, no_media_formatted_timeline)

    return formatted_timeline, no_media_formatted_timeline, story, json.dumps(game_structure_with_media, indent=2), json.dumps(game_structure_without_media, indent=2) #, game_structure_with_media

media_file_types = ["image", "video", "audio"]

def generate_media_file_list(n):
    return [random.choice(media_file_types) for _ in range(n)]


def show_elements(text):
    # Parse the input text
    pattern = r'(\d+): (UI|Story|Media) - (.+)'
    blocks = re.findall(pattern, text)
    
    # Sort blocks by their timestamp
    blocks.sort(key=lambda x: int(x[0]))
    
    outputs = []
    
    for timestamp, block_type, content in blocks:
        if block_type == 'UI':
            # Create HTML for UI elements
            ui_html = f'<div class="ui-element">{content}</div>'
            outputs.append(gr.HTML(ui_html))
        elif block_type == 'Story':
            # Display story elements as Markdown
            outputs.append(gr.Markdown(f"**{content}**"))
        elif block_type == 'Media':
            if content.lower() == 'audio':
                # Placeholder for audio element
                outputs.append(gr.Audio(label=f"Audio at {timestamp} in the order"))
            elif content.lower() == 'video':
                # Placeholder for video element
                outputs.append(gr.Video(label=f"Video at {timestamp} in the order"))
            elif content.lower() == 'image':
                # Placeholder for image element
                outputs.append(gr.Image(label=f"Image at {timestamp} in the order"))
    
    return outputs

def show_elements_json_input(json_input):
    data = json.loads(json_input)
    masterlocation1 = data['masterlocation1']
    
    outputs = []
    
    for location, details in masterlocation1.items():
        if location == 'end':
            continue
        
        with gr.Accordion(f"Location: {location} - Previous description {details['description']}", open=False):
            description = gr.Textbox(label="Description", value=details['description'], interactive=True)
            outputs.append(description)
            
            events = gr.Textbox(label="Events", value=json.dumps(details['events']), interactive=True)
            outputs.append(events)
            
            choices = gr.Textbox(label="Choices", value=json.dumps(details['choices']), interactive=True)
            outputs.append(choices)
            
            transitions = gr.Textbox(label="Transitions", value=json.dumps(details['transitions']), interactive=True)
            outputs.append(transitions)
            
            # New media field
            media = gr.Textbox(label="Media", value=json.dumps(details.get('media', [])), interactive=True)
            outputs.append(media)
    
    def update_json(*current_values):
        updated_data = {"masterlocation1": {}}
        locations = [loc for loc in masterlocation1.keys() if loc != 'end']
        for i, location in enumerate(locations):
            updated_data["masterlocation1"][location] = {
                "description": current_values[i*5],
                "events": json.loads(current_values[i*5 + 1]),
                "choices": json.loads(current_values[i*5 + 2]),
                "transitions": json.loads(current_values[i*5 + 3]),
                "media": json.loads(current_values[i*5 + 4])  # New media field
            }
        updated_data["masterlocation1"]["end"] = masterlocation1["end"]
        return json.dumps(updated_data, indent=2)
    
    update_button = gr.Button("Update JSON")
    json_output = gr.Textbox(label="Updated JSON", lines=10)
    
    update_button.click(update_json, inputs=outputs, outputs=json_output)
    
    return outputs + [update_button, json_output]

def create_media_component(file_path):
    print(file_path)
    _, extension = os.path.splitext(file_path)
    extension = extension.lower()[1:]  # Remove the dot and convert to lowercase

    if extension in ['jpg', 'jpeg', 'png', 'gif', 'webp']:
        return gr.Image(value=file_path, label="Image Input")
    elif extension in ['mp4', 'avi', 'mov']:
        return gr.Video(value=file_path, label="Video Input")
    elif extension in ['mp3', 'wav', 'ogg']:
        return gr.Audio(value=file_path, label="Audio Input")
    else:
        return gr.Textbox(value=file_path, label=f"File: {os.path.basename(file_path)}")

def convert_timeline_to_game_structure(timeline):
    lines = timeline.split('\n')
    game_structure = {}
    current_location = 0
    sub_location = 0

    for i, line in enumerate(lines):
        if line.strip() == "":
            continue
        
        if line[0].isdigit():  # New location starts
            current_location += 1
            sub_location = 0
            location_key = f"location{current_location}"
            game_structure[location_key] = {
                "description": "",
                "events": [],
                "choices": ["continue"],
                "transitions": {}
            }
        else:  # Continue with sub-locations or media entries
            sub_location += 1
            location_key = f"location{current_location}_{sub_location}"
        
        # Extract the event description
        parts = line.split(': ', 1)
        if len(parts) == 2:
            prefix, rest = parts
            event_parts = rest.split(' - ', 1)
            if len(event_parts) == 2:
                event_type, event_description = event_parts
            else:
                event_type, event_description = "Unknown", rest
        else:
            event_type, event_description = "Unknown", line
        
        description = rest.strip() if event_type in ["Media", "UI"] else f"{event_type}: {event_description}"
        
        if sub_location == 0:
            game_structure[f"location{current_location}"]["description"] = description
        else:
            game_structure[f"location{current_location}"]["events"].append({
                "description": description,
                "type": event_type
            })
        
        # Set the transition to the next location or to the end
        if i < len(lines) - 1:
            next_line = lines[i + 1].strip()
            if next_line and next_line[0].isdigit():  # New location starts
                game_structure[f"location{current_location}"]["transitions"]["continue"] = f"masterlocation1_location{current_location + 1}"
            else:
                #game_structure[f"location{current_location}"]["transitions"]["continue"] = f"location_{current_location}_{sub_location + 1}"
                game_structure[f"location{current_location}"]["transitions"]["continue"] = "end"
        else:
            game_structure[f"location{current_location}"]["transitions"]["continue"] = "end"
    
    # Add an end location
    game_structure["end"] = {
        "description": "The adventure ends here.",
#         "choices": [],
#         "transitions": {}
        "choices": ["restart"],
        "transitions": {"restart": "location1"}  # Assuming location_1 is the start

    }
    
    # Wrap the game structure in master_location1
    wrapped_structure = {"masterlocation1": game_structure}
    
    return wrapped_structure
    
def generate_game_structures(timeline_with_media, timeline_without_media):
    
    game_structure_with_media = convert_timeline_to_game_structure(timeline_with_media)
    game_structure_without_media = convert_timeline_to_game_structure(timeline_without_media)
    
    return game_structure_with_media, game_structure_without_media


#-----------------------------------------------------------------------------------------------------------------------------------

class Player:
    def __init__(self):
        self.inventory = []
        self.money = 20
        self.knowledge = {}

    def add_item(self, item):
        self.inventory.append(item)

    def has_item(self, item):
        return item in self.inventory

    def update_knowledge(self, topic):
        self.knowledge[topic] = True

#importing all_states from relatively_constant_variables

def validate_transitions(all_states):
    errors = []
    for location, states in all_states.items():
        for state_key, state in states.items():
            for transition_key, transition_state in state['transitions'].items():
                # Check if the transition is to another location
                if transition_state in all_states:
                    trans_location, trans_state = transition_state, 'start'  # Assuming 'start' state for new locations
                elif '_' in transition_state:
                    trans_location, trans_state = transition_state.split('_')
                else:
                    trans_location, trans_state = location, transition_state

                # Validate the transition state
                if trans_location not in all_states or trans_state not in all_states[trans_location]:
                    errors.append(f"Invalid transition from {location}.{state_key} to {trans_location}.{trans_state}")

    return errors

path_errors = validate_transitions(all_states)
if path_errors:
    for error in path_errors:
        print(error)
else:
    print("All transitions are valid.")

class GameSession:
    def __init__(self, starting_location='village', starting_state='start'):
        self.player = Player()
        self.current_location = starting_location
        self.current_state = starting_state
        self.game_log = []

    def make_choice(self, choice_index):
        state = all_states[self.current_location][self.current_state]
        if 0 <= choice_index < len(state['choices']):
            choice = state['choices'][choice_index]
            next_state = state['transitions'][choice]

            self.game_log.append(f"You chose: {choice}")
            self.game_log.append(state['description'])

            if 'consequences' in state and choice in state['consequences']:
              if state['consequences'][choice]:
                  state['consequences'][choice](self.player)
              else:
                  # Handle empty consequence, e.g., log a message or provide a default action
                  print(f"No consequence for choice: {choice}")
                  # You can add any default action here if needed

            if '_' in next_state:
                self.current_location, self.current_state = next_state.split('_')
            else:
                self.current_state = next_state

            return self.get_current_state_info()
        else:
            return "Invalid choice. Please try again."

    def get_current_state_info(self):
        state = all_states[self.current_location][self.current_state]
        choices = [f"{idx + 1}. {choice}" for idx, choice in enumerate(state['choices'])]
        return state['description'], choices, "\n".join(self.game_log)
    
    def get_current_state_media(self):
        media = all_states[self.current_location][self.current_state]['media']
        return media


def start_game(starting_location='village', starting_state='start'):
    game_session = GameSession(starting_location, starting_state)
    description, choices, game_log = game_session.get_current_state_info()
    return description, choices, game_log, game_session

def make_choice(choice, game_session, with_media=False): #Calls the nested make choice function in the game session class
    if not choice:
        description, choices, game_log = game_session.get_current_state_info()
        return description, choices, "Please select a choice before proceeding.", game_session

    choice_index = int(choice.split('.')[0]) - 1 
    result = game_session.make_choice(choice_index)

    if with_media:
        media = game_session.get_current_state_media()
        return result[0], gr.update(choices=result[1]), result[2], game_session, media
    else:
        return result[0], gr.update(choices=result[1]), result[2], game_session

def load_game(custom_config=None, with_media=False):
    global all_states
    if not custom_config:
        return gr.update(value="No custom configuration provided."), None, None, None, None, None, None

    try:
        new_config = json.loads(custom_config)
        all_states = new_config

        # Determine the starting location and state
        starting_location = next(iter(all_states.keys()))
        starting_state = next(iter(all_states[starting_location].keys()))
        print(f"Starting location: {starting_location}, Starting state: {starting_state}")

        game_session = GameSession(starting_location, starting_state)
        description, choices, game_log = game_session.get_current_state_info()
        new_path_errors = validate_transitions(all_states)
        
        output_media = []

        if with_media:
            media_list = all_states[starting_location][starting_state].get('media', [])
            print(f"Media list: {media_list}")
            
            if media_list:
                for media_path in media_list:
                    #media_component = create_media_component(media_path)
                    output_media.append(media_path)
                print(f"Created {len(output_media)} media components")

        success_message = f"Custom configuration loaded successfully!\n{new_path_errors}"
        return (
            gr.update(value=success_message),
            game_log,
            description,
            gr.update(choices=choices),
            gr.update(value=custom_config),
            game_session,
            output_media if with_media else None
        )

    except json.JSONDecodeError as e:
        error_message = format_json_error(custom_config, e)
        return gr.update(value=error_message), None, None, None, None, gr.update(value=custom_config), None

    except Exception as e:
        error_message = f"Error loading custom configuration: {str(e)}"
        return gr.update(value=error_message), None, None, None, None, gr.update(value=custom_config), None

def format_json_error(config, error):
    lineno, colno = error.lineno, error.colno
    lines = config.split('\n')
    error_line = lines[lineno - 1] if lineno <= len(lines) else ""
    pointer = ' ' * (colno - 1) + '^'

    return f"""Invalid JSON format in custom configuration:
Error at line {lineno}, column {colno}:
{error_line}
{pointer}
Error details: {str(error)}"""

def display_website(link):
  html = f"<iframe src='{link}' width='100%' height='1000px'></iframe>"
  gr.Info("If 404 then the space/page has probably been disabled - normally due to a better alternative")
  return html

initgameinfo = start_game()

#-----------------------------------------------------------------------------------------------------------------------------------

# Set the directory where files will be saved
SAVE_DIR = os.path.abspath("saved_media")

# Ensure the save directory exists
os.makedirs(SAVE_DIR, exist_ok=True)

# Define supported file extensions
SUPPORTED_EXTENSIONS = {
    "image": [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".webp"],
    "audio": [".mp3", ".wav", ".ogg"],
    "video": [".mp4", ".avi", ".mov", ".webm"]
}

def save_file(file):
    if file is None:
        return "No file uploaded.", gr.update()

    try:
        # Get the original filename and extension
        original_filename = os.path.basename(file.name)
        _, extension = os.path.splitext(original_filename)

        # Check if the file extension is supported
        if not any(extension.lower() in exts for exts in SUPPORTED_EXTENSIONS.values()):
            return f"Unsupported file type: {extension}", gr.update()

        # Create a unique filename to avoid overwriting
        base_name = os.path.splitext(original_filename)[0]
        counter = 1
        new_filename = f"{base_name}{extension}"
        while os.path.exists(os.path.join(SAVE_DIR, new_filename)):
            new_filename = f"{base_name}_{counter}{extension}"
            counter += 1

        # Copy the file from the temporary location to our save directory
        dest_path = os.path.join(SAVE_DIR, new_filename)
        shutil.copy2(file.name, dest_path)

        # Return success message and updated FileExplorer
        return f"File saved as {new_filename} in {SAVE_DIR}", gr.update(value=SAVE_DIR), gr.update(value=None)
    except Exception as e:
        return f"Error saving file: {str(e)}", gr.update(value=SAVE_DIR), gr.update()

def view_file(file_path):
    if not file_path:
        return None, None, None, "No file selected."

    try:
        full_path = os.path.join(SAVE_DIR, file_path)
        _, extension = os.path.splitext(full_path)
        extension = extension.lower()

        if extension in SUPPORTED_EXTENSIONS["image"]:
            return Image.open(full_path), None, None, None
        elif extension in SUPPORTED_EXTENSIONS["audio"]:
            return None, full_path, None, None
        elif extension in SUPPORTED_EXTENSIONS["video"]:
            return None, None, full_path, None
        else:
            return None, None, None, f"Unsupported file type: {extension}"
    except Exception as e:
        return None, None, None, f"Error viewing file: {str(e)}"

def refresh_file_explorer():
    return gr.update()

#-----------------------------------------------------------------------------------------------------------------------------------

def timeline_get_random_suggestions(num_lists, items_per_list):
    """
    Generate random suggestions from a specified number of lists.
    
    :param num_lists: Number of lists to consider
    :param items_per_list: Number of items to select from each list
    :return: A list of randomly selected suggestions
    """
    selected_lists = random.sample(all_idea_lists, min(num_lists, len(all_idea_lists)))
    suggestions = []
    
    for lst in selected_lists:
        suggestions.extend(random.sample(lst, min(items_per_list, len(lst))))
    
    return suggestions

#-----------------------------------------------------------------------------------------------------------------------------------

with gr.Blocks() as demo:
    gr.HTML("""<div style="width: 100%; text-align: center">Main ideas for this space is (June 2024) (Custom component planning?):</div>
    <div style="display: flex; justify-content: center; margin-bottom: 20px; align-items: center;">
        <div style="width: 20%; text-align: center">We can generate almost any media data and more </div>
        <div style="width: 20%; text-align: center">A program exist around data </div>
        <div style="width: 20%; text-align: center">Time moves in a straight so all considerations are flattend by the nature of time </div>
        <div style="width: 20%; text-align: center">llms good at short questions </div>
        <div style="width: 20%; text-align: center">HF + Gradio allows for api use so this my prototype tool for tool use test</div>
    </div>""")
    with gr.Accordion("Qwen 0.5B as Space Guide Tests", open=False):
        with gr.Tab("General FAQ Attempt"):
            FAQMainOutput = gr.TextArea(placeholder='Output will show here')
            FAQCustomButtonInput = gr.TextArea(lines=1, placeholder='Prompt goes here')

            for category_name, category_prompts in FAQAllprompts.items():
                with gr.Accordion(f"General {category_name} Pattern based", open=False):
                    with gr.Group():
                        for index, (prompt, _) in enumerate(category_prompts):
                            button = gr.Button(prompt)
                            button.click(llmguide_generate_response, inputs=[FAQCustomButtonInput, gr.State(index), gr.State(category_name)], outputs=FAQMainOutput)

        with gr.Tab("General RAG (Pathfinder?) Attempt"):
            gr.HTML("Placeholder for weak RAG Type Charcter interaction test aka input for JSON 'Knowledge Base' Input")
        # gr.Interface(
        #     fn=rag,
        #     inputs=[
        #         gr.Textbox(lines=2, placeholder="Enter your question here..."),
        #         gr.Checkbox(label="Stream output")
        #     ],
        #     outputs=[
        #         gr.Textbox(label="Generated Response"),
        #         gr.Textbox(label="Tokens per second"),
        #         gr.Textbox(label="Resource Usage")
        #     ],
        #     title="RAG Q&A System with GPU Acceleration and Resource Monitoring",
        #     description="Ask a question and get an answer based on the retrieved context. The response is generated using a GPU-accelerated model. Resource usage is logged at the end of generation."
        # )

            gr.Interface(
                fn=process_query,
                inputs=[
                    gr.Textbox(lines=2, placeholder="Enter your question here..."),
                    gr.Checkbox(label="Use RAG"),
                    gr.Checkbox(label="Stream output")
                ],
                outputs=[
                    gr.Textbox(label="Generated Response"),
                    gr.Textbox(label="Tokens per second"),
                    gr.Textbox(label="RAM Usage"),
                    gr.Textbox(label="Referenced Documents")
                ],
                title="RAG/Non-RAG Q&A System",
                description="Ask a question with or without using RAG. The response is generated using a GPU-accelerated model. RAM usage and referenced document IDs (for RAG) are logged."
            )

        with gr.Tab("Any Request to Qwen2-0.5B"):
            gr.HTML("Placeholder for https://huggingface.co/h2oai/h2o-danube3-500m-chat-GGUF as alternative")
            gr.HTML("Placeholder for qwen 2 72b as alternative use checkbox and gradio client api call")
            gr.Markdown("# Qwen-0.5B-Instruct Language Model")
            gr.Markdown("This demo uses the Qwen-0.5B-Instruct model to generate responses based on your input.")
            gr.HTML("Example prompts: <br>I am writing a story about a chef. please write dishes to appear on the menu. <br>What are the most common decisions that a chef story would include? <br>What are the kinds problems that a chef story would include? <br>What are the kinds of out of reach goals that a chef story would include? <br>Continue this config - Paste any complete block of the config")
            
            with gr.Row():
                with gr.Column():
                    llmguide_prompt = gr.Textbox(lines=2, placeholder="Enter your prompt here...")
                    llmguide_stream_checkbox = gr.Checkbox(label="Enable streaming")
                    llmguide_submit_button = gr.Button("Generate")
                
                with gr.Column():
                    llmguide_output = gr.Textbox(lines=10, label="Generated Response")
                    llmguide_tokens_per_second = gr.Textbox(label="Tokens per Second")
            
            llmguide_submit_button.click(
                llmguide_generate_response,
                inputs=[llmguide_prompt, llmguide_stream_checkbox],
                outputs=[llmguide_output, llmguide_tokens_per_second],
            )

    with gr.Accordion("Decisions Creation to Story to Config Conversation", open=False):
        with gr.Tab("Timeline Guide for Config Generation or evelution"):
            with gr.Accordion("Empty Config shape for explaining to LLM", open=False):
                gr.HTML(f"placeholder for current empty JSON config shape")
                gr.HTML("Structural indicators of quality of config")
            with gr.Tab("Random Suggestions"):
                timeline_num_lists_slider = gr.Slider(minimum=1, maximum=len(all_idea_lists), step=1, label="Number of Lists to Consider", value=3)
                timeline_items_per_list_slider = gr.Slider(minimum=1, maximum=10, step=1, label="Items per List", value=3)
                timeline_generate_button = gr.Button("Generate Random Suggestions")
                timeline_output_text = gr.Textbox(label="Random Suggestions", lines=10)

                timeline_generate_button.click(
                    timeline_get_random_suggestions,
                    inputs=[timeline_num_lists_slider, timeline_items_per_list_slider],
                    outputs=[timeline_output_text]
                )
            with gr.Tab("Config Specific"): 
                gr.HTML("Timeline for making Timelines?")
                gr.HTML("Componets (outside Code Support for Config): Decisions (and context explanation), Nested Sections, Media (Especially to affect decisions), Replayability (GTA and Tekken type mechanics in text form), Theme integration (Modified Varibles that affect UI or config order)")
                gr.HTML("From Nothing <br>")
                gr.HTML("From Existing <br>")
            with gr.Tab("Existing Game Analysis"): 
                gr.HTML("Existing Games eg. GTA Heists - Same Map with overlapping branching narratives, Battlefront - Elites amongst Commoners, Tekken Casino (one mistake = 1/2 or 1/3 of your Resources) and Turn based: 'Tactics' type nintendo games, Chess (and any other tile based game) ")
                gr.HTML("Existing Game Rules for text - Cyberpunk RED, ")
            with gr.Tab("Multiplayer options"):
                gr.HTML("Community playthrough = Tally of players choices, Random item placed in a random location - first person to get it wins, Survival by location or characters met")
        with gr.Tab("Some Workflow Helpers (Removed as built into Semi-Auto)"):
            gr.HTML("Song / Random Scenario to 'full game' manual or auto is end goal ")
            gr.HTML("Main Priority is to make rails for the story to work on as a simplified view of a game is a linear path with loops (gameplay mechanics) <br> Below = Manual Edit (At bottom you can save the changes and copy it to test) <br>For LLM edit copy either the Timeline")
            gr.HTML("The problem is the assets generation isnt free and using spaces as api also clogs them (no way to know when ZeroGPUs are at lowest usage) so using iFrame is better for now <br> So worklfow -- Make Skeleton -- Use Iframe to get media -- then ask for details / story / gameplay loop ideas and add back to config")
            with gr.Tab("Schema First"):
                gr.HTML("Some Kinds of game skeletons ideas - Timelines, Graph as State machine paths, Economy ecosystem")
                gr.HTML("One prompt to be used to test models - <br>Please make 10 python lists for the types of media files and their purposes in a game and then use those lists to random generate a timeline of 20 items when the function is called <br>Great next suggest ways to improve this function to create better timelines")
                with gr.Accordion("Test for config to gradio components order - ignore for now", open=False ):
                    gr.Markdown("Asset Generation")
                    gr.HTML("Splits by new line - The idea here was to allow for saving the file ")
                    input_text = gr.Textbox(label="Input Text", lines=10)
                    output_group = gr.Group()
                    
                    @gr.render(inputs=input_text)
                    def update(text):
                        return show_elements(text)
                with gr.Accordion("Proto Config Assist"):
                    with gr.Accordion("Can copy in the Test Example State Machine tab - only linear path for now", open=False):
                        gr.Markdown("# Story and Timeline Generator")
                        gr.Markdown("Click the button to generate a random timeline and story based on UI elements and story events. <br>Ask an LLM to use this to write a story around")
                        with gr.Row():
                                game_structure_output_text_with_media = gr.Code(language="json")
                                game_structure_output_text = gr.Code(language="json")
                    with gr.Accordion("JSON with no edits"):
                        with gr.Row():
                            timeline_output_with_assets = gr.Textbox(label="Timeline with Assets Considered", lines=20)
                            timeline_output = gr.Textbox(label="Timeline (Order might be different for now)", lines=20)
                            story_output = gr.Textbox(label="Generated Story (Order might be different for now)", lines=20)
                    with gr.Row():
                        generate_no_ui_timeline_points = gr.Slider(minimum=1, value=10, step=1, maximum=30, label="Choose the amount of ui timeline points")
                        generate_no_media_timeline_points = gr.Slider(minimum=1, value=5, step=1, maximum=30, label="Choose the amount of media timeline points")
                        generate_with_media_check = gr.Checkbox(label="Generate with media", value=True)
                    generate_button = gr.Button("Generate Story and Timeline")

                    @gr.render(inputs=game_structure_output_text_with_media)
                    def update(game_structure_output_text_with_media):
                        return show_elements_json_input(game_structure_output_text_with_media)
                    
                    generate_button.click(generate_story_and_timeline, inputs=[generate_no_ui_timeline_points, generate_no_media_timeline_points, generate_with_media_check], outputs=[timeline_output_with_assets, timeline_output, story_output, game_structure_output_text_with_media, game_structure_output_text])
                    
            with gr.Tab("Asset First"):
                gr.HTML("Make Asset and make the transitions using LLM")

            with gr.Tab("Export Options"):
                gr.HTML("Placeholder - My Custom JS, Playcanvas, Unreal Engine")

        with gr.Tab("Config Writing Considerations"):
            gr.HTML("Player Stats, Inventory and NPCS not implemented yet, so traversal type games best aka graph like structures <br> Game is like a universal translator so any concept can be covered")

    with gr.Accordion("Existing Config Crafting Progression - click to open", open=False):
        with gr.Tab("Quick Ways to evaluate current config"): 
            gr.HTML("Ask SOTA LLMs This prompt: <br> This config is for a basic text based game engine. I dont have any structural metrics to assess the quality of the config. What JSON things can we look at to see if it may be too bland for a person testing the game? <br> Then Paste the Config with the prompt")
            gr.HTML("""Original Claude 3.5 Sonnet Response snippets: <br>
Limited state variety: With only 13 states across 5 locations, the game might feel short and lacking in diversity. Consider adding more locations or states within existing locations.
Low average choices: An average of 1.92 choices per state might make the game feel linear. Increasing the number of choices in more states could improve player engagement.
Limited consequences: Only 3 states have consequences, which might make player choices feel less impactful. Adding more consequences could increase the sense of agency.
Short descriptions: The average description length of 13.15 words might not provide enough detail to immerse players. Consider expanding descriptions to create a richer narrative.
Lack of media: No states currently use media elements, which could make the game feel less engaging. Adding images, sound effects, or other media could enhance the player experience.
Limited narrative branching: While there are some loops and choices, the overall structure is relatively linear. Adding more branching paths could increase replayability and player interest.

To make the game less bland, consider:

Adding more states and locations
Increasing the number of choices in each state
Implementing more consequences for player actions
Expanding descriptions to create a richer narrative
Incorporating media elements
Creating more diverse paths through the game""")
            
        with gr.Tab("Main areas of considerations"):
            with gr.Tab("Mermaid Graphs and Nesting"):
                gr.HTML("Claude Artifacts to illustrate nested structure brainstorms - <br> https://claude.site/artifacts/4a910d81-1541-49f4-8531-4f27fe56cd1e <br> https://claude.site/artifacts/265e9242-2093-46e1-9011-ed6ad938be90?fullscreen=false <br> ")
                gr.HTML("")
            with gr.Tab("Structural Inspirations"):
                gr.HTML("GTA Heists - Replayability and stakes, Tekken - 2/3 mistakes = lost round ")
                gr.HTML("Sports Scores, ")
            with gr.Tab("Themes"):
                gr.HTML("")

# import originalconfigatbeinningofthisspace, claude3_5_06072024configtips, tipsupdatedconfigatbeinningofthisspace from relatively_constant_variables

        with gr.Tab("Improvement of the default config"):
            gr.HTML("Example of how to advance a game config with LLM - end goal is to have automatic worflow that takes these considerations into account <br> Things missing from the game engine - Economics and Basic Politics (NPC affiliation)")
            gr.HTML("Suggestions from claude 3.5 on how to change config")
            display_originalconfigatbeinningofthisspace = originalconfigatbeinningofthisspace.replace(' ', '&nbsp;').replace('\n', '<br>') 
            display_claude3_5_06072024configtips = claude3_5_06072024configtips.replace(' ', '&nbsp;').replace('\n', '<br>')
            display_tipsupdatedconfigatbeinningofthisspace = tipsupdatedconfigatbeinningofthisspace.replace(' ', '&nbsp;').replace('\n', '<br>') 
            gr.HTML("""<div style="display: flex; justify-content: space-between; height: 900px; overflow: auto; ">
                <div style="flex: 1; margin: 0 10px; padding: 20px;">
                    """ + display_originalconfigatbeinningofthisspace + """
                </div>
                <div style="flex: 1; margin: 0 10px; padding: 20px; width: 50%">
                    """ + display_claude3_5_06072024configtips + """
                </div>
                <div style="flex: 1; margin: 0 10px; padding: 20px;">
                    """ + display_tipsupdatedconfigatbeinningofthisspace + """
                </div>
            </div>""")


    with gr.Accordion("Temporary Asset Management Assist - click to open", open=False):
        gr.HTML("Make Files and Text ideas for the field and paste <br>When Space is restarted it will clear - zip export and import will be added later")
        with gr.Accordion("Upload Files for config"):
            gr.Markdown("# Media Saver and Explorer (refresh file list to be resolved - for now upload all files and reload the space - they persist as long as the space creator doesnt reset/update the space - will add manual clear options later)")
            with gr.Tab("Upload Files"):
                file_input = gr.File(label="Choose File to Upload")
                save_output = gr.Textbox(label="Upload Status")

            with gr.Tab("File Explorer"):
                
                file_explorer = gr.FileExplorer(
                    root_dir=SAVE_DIR,
                    glob="*.*",
                    file_count="single",
                    height=300,
                    label="Select a file to view"
                )
                with gr.Row():
                    refresh_button = gr.Button("Refresh", scale=1)
                    view_button = gr.Button("View File")
                image_output = gr.Image(label="Image Output", type="pil")
                audio_output = gr.Audio(label="Audio Output")
                video_output = gr.Video(label="Video Output")
                error_output = gr.Textbox(label="Error")

            file_input.upload(
                save_file,
                inputs=file_input,
                outputs=[save_output, file_explorer, file_input]
            )

            view_button.click(
                view_file,
                inputs=file_explorer,
                outputs=[image_output, audio_output, video_output, error_output]
            )

            refresh_button.click(
                refresh_file_explorer,
                outputs=file_explorer
            )

            with gr.Tab("Batch add files to config"):
                gr.HTML("Placeholder for Config parser to allow dropdowns for the media parts of the config inserted to make assigning media quick")
                gr.HTML("Placeholder for Config parser to allow for current zerospace creation and placement into the config (LLM can give list of media but still have to figure out workflow from there)")

            gr.HTML("Placeholder for clearing uploaded assets (public space and temporary persistence = sharing and space problems)")
    
    with gr.Tab("Test and Edit Config"):
        gr.HTML("The main issue is frequent changes add more chances for bugs in how - manual and auto refer mainly to ensuring correct JSON format ")
        with gr.Tab("Full Manual - Test Example State Machine"): 
            with gr.Tab("Config Without Assets"):
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.Markdown("# Text-based Adventure Game")

                        description = gr.Textbox(label="Current Situation", lines=4, value=initgameinfo[0])
                        choices = gr.Radio(label="Your Choices", choices=initgameinfo[1])
                        submit_btn = gr.Button("Make Choice")
                        game_log = gr.Textbox(label="Game Log", lines=20, value=initgameinfo[2])
                        game_session = gr.State(value=initgameinfo[3])
                        submit_btn.click(
                            make_choice,
                            inputs=[choices, game_session],
                            outputs=[description, choices, game_log, game_session]
                        )
                    with gr.Column(scale=1):
                        gr.Markdown("# Debugging")
                        error_box = gr.Textbox(label="Path Errors", lines=4, value=path_errors)
                        with gr.Accordion("Config (Game Spoiler and Example for llm to remix)", open=False):
                            custom_config = gr.Textbox(label="Custom Configuration (JSON)", value=json.dumps(all_states, default=lambda o: o.__dict__, indent=2), lines=8)
                            custom_configbtn = gr.Button("Load Custom Config")

                            custom_configbtn.click(
                                load_game,
                                inputs=[custom_config],
                                outputs=[error_box, game_log, description, choices, game_session, custom_config]
                            )
            with gr.Tab("Config With Assets"):
                gr.HTML("Placeholder as not complete yet (still only text, current issue is how to switch gradio output, maybe output is gr.Group and we constantly add the appropriate gr for each file type? What about multi file types on one state?)")
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.Markdown("# Text-based Adventure Game")

                        wadescription = gr.Textbox(label="Current Situation", lines=4, value=initgameinfo[0])
                        wamediabool = gr.State(value=True)
                        wamedia = gr.State(["testmedia/Stable Audio - Raindrops, output.wav"])

                        @gr.render(inputs=wamedia)
                        def dynamic_with_media(media_items):
                            print(media_items)
                            with gr.Group() as wamediagrouping: 
                                gr.HTML("Placeholder to load all media tests - still need to test clearing media on ")
                                if media_items == []:
                                    gr.Markdown("No media items to display.")
                                else:
                                    for item in media_items:
                                        render = create_media_component(item)
                            
                            return wamediagrouping
                        
                        wachoices = gr.Radio(label="Your Choices", choices=initgameinfo[1])
                        wasubmit_btn = gr.Button("Make Choice")
                        wagame_log = gr.Textbox(label="Game Log", lines=20, value=initgameinfo[2])
                        wagame_session = gr.State(value=initgameinfo[3])
                        wasubmit_btn.click(
                            make_choice,
                            inputs=[wachoices, wagame_session, wamediabool],
                            outputs=[wadescription, wachoices, wagame_log, wagame_session, wamedia]
                        )
                    with gr.Column(scale=1):
                        gr.Markdown("# Debugging")
                        waerror_box = gr.Textbox(label="Path Errors", lines=4, value=path_errors)
                        with gr.Accordion("Config (Game Spoiler and Example for llm to remix)", open=False):
                            wacustom_config = gr.Textbox(label="Custom Configuration (JSON)", value=json.dumps(all_states, default=lambda o: o.__dict__, indent=2), lines=8)
                            wacustom_configbtn = gr.Button("Load Custom Config")

                            wacustom_configbtn.click(
                                load_game,
                                inputs=[wacustom_config, wamediabool],
                                outputs=[waerror_box, wagame_log, wadescription, wachoices, wacustom_config, wagame_session, wamedia]
                            )
                
            with gr.Tab("Config With Minimal 3D considered"):
                gr.HTML("Placeholder for Config with 3D assets")

        with gr.Tab("Semi-Auto - Edit config while playing game"):
            gr.HTML("-- Incomplete -- Issue here is updating all variables <br> Current problem is passing values from rendered items to the config box <br>Generate Timline also makes config without mmedia key <br>Need a way have dropdowns for the filelist and transitions eg. changing transitions must auto update choices <br>Config to components has hardcoded variables based on the auto gen so changes break it")
            with gr.Row():
                with gr.Column(scale=1):
                    with gr.Group():
                        gr.Markdown("# Text-based Adventure Game")

                        ewpwadescription = gr.Textbox(label="Current Situation", lines=4, value=initgameinfo[0])
                        ewpwamediabool = gr.State(value=True)
                        ewpwamedia = gr.State(["testmedia/Stable Audio - Raindrops, output.wav"])

                        @gr.render(inputs=ewpwamedia)
                        def dynamic_with_media(media_items):
                            print(media_items)
                            with gr.Group() as ewpwamediagrouping: 
                                gr.HTML("Placeholder to load all media tests - still need to test clearing media on ")
                                if media_items == []:
                                    gr.Markdown("No media items to display.")
                                else:
                                    for item in media_items:
                                        render = create_media_component(item)
                            
                            return ewpwamediagrouping
                        
                        ewpwachoices = gr.Radio(label="Your Choices", choices=initgameinfo[1])
                        ewpwasubmit_btn = gr.Button("Make Choice")
                        ewpwagame_log = gr.Textbox(label="Game Log", lines=20, value=initgameinfo[2])
                        ewpwagame_session = gr.State(value=initgameinfo[3])
                        ewpwasubmit_btn.click(
                            make_choice,
                            inputs=[ewpwachoices, ewpwagame_session, ewpwamediabool],
                            outputs=[ewpwadescription, ewpwachoices, ewpwagame_log, ewpwagame_session, ewpwamedia]
                        )
                with gr.Column(scale=1):
                    gr.Markdown("# Debugging")
                    ewpwaerror_box = gr.Textbox(label="Path Errors", lines=4, value=path_errors)
                    ewpwacustom_config = gr.Textbox(label="Custom Configuration (JSON)", value=json.dumps(all_states, default=lambda o: o.__dict__, indent=2), lines=8)
                    ewpwacustom_configbtn = gr.Button("Load Custom Config")

                    ewpwacustom_configbtn.click(
                        load_game,
                        inputs=[ewpwacustom_config, ewpwamediabool],
                        outputs=[ewpwaerror_box, ewpwagame_log, ewpwadescription, ewpwachoices, ewpwacustom_config, ewpwagame_session, ewpwamedia]
                    )
                    with gr.Accordion("Can copy in the Test Example State Machine tab - only linear path for now", open=False):
                        gr.Markdown("# Story and Timeline Generator")
                        gr.Markdown("Click the button to generate a random timeline and story based on UI elements and story events. <br>Ask an LLM to use this to write a story around")
                        with gr.Row():
                            ewpgame_structure_output_text_with_media = gr.Code(language="json")
                            ewpgame_structure_output_text = gr.Code(language="json")
                        with gr.Row():
                            ewptimeline_output_with_assets = gr.Textbox(label="Timeline with Assets Considered", lines=20)
                            ewptimeline_output = gr.Textbox(label="Timeline (Order might be different for now)", lines=20)
                            ewpstory_output = gr.Textbox(label="Generated Story (Order might be different for now)", lines=20)
                    with gr.Row():
                        ewpgenerate_no_ui_timeline_points = gr.Slider(minimum=1, value=10, step=1, maximum=30, label="Choose the amount of ui timeline points")
                        ewpgenerate_no_media_timeline_points = gr.Slider(minimum=1, value=5, step=1, maximum=30, label="Choose the amount of media timeline points")
                        ewpgenerate_with_media_check = gr.Checkbox(label="Generate with media", value=True)
                    ewpgenerate_button = gr.Button("Generate Story and Timeline")

                    @gr.render(inputs=ewpwacustom_config) #ewpgame_structure_output_text_with_media
                    def update(ewpwacustom_config):
                        return show_elements_json_input(ewpwacustom_config)
                    
                    ewpgenerate_button.click(generate_story_and_timeline, inputs=[ewpgenerate_no_ui_timeline_points, ewpgenerate_no_media_timeline_points, ewpgenerate_with_media_check], outputs=[ewptimeline_output_with_assets, ewptimeline_output, ewpstory_output, ewpwacustom_config, ewpgame_structure_output_text]) #ewpgame_structure_output_text_with_media, ewpgame_structure_output_text])

    with gr.Tab("Asset Generation Considerations"):
        gr.HTML("Licenses for the spaces still to be evaluated - June 2024 <br> Users to follow with cool spaces - https://huggingface.co/fffiloni, https://huggingface.co/artificialguybr, https://huggingface.co/radames, https://huggingface.co/multimodalart, ")

        with gr.Accordion("LLM HF Spaces/Sites (Click Here to Open) - Ask for a story and suggestions based on the autoconfig", open=False):
            with gr.Row():
                linktochat = gr.Dropdown(choices=["https://labs.perplexity.ai/", "https://chat.lmsys.org", "https://sdk.vercel.ai/docs", "https://qwen-qwen-max-0428.hf.space", "https://cohereforai-c4ai-command-r-plus.hf.space", "https://huggingface.co/spaces/eswardivi/Phi-3-mini-128k-instruct", "https://eswardivi-phi-3-mini-4k-instruct.hf.space", "https://cyzgab-catch-me-if-you-can.hf.space", "https://snowflake-snowflake-arctic-st-demo.hf.space", "https://qwen-qwen1-5-110b-chat-demo.hf.space", "https://ysharma-chat-with-meta-llama3-8b.hf.space", "https://databricks-dbrx-instruct.hf.space", "https://qwen-qwen1-5-moe-a2-7b-chat-demo.hf.space", "https://cohereforai-c4ai-command-r-v01.hf.space", "https://ehristoforu-mixtral-46-7b-chat.hf.space", "https://stabilityai-stablelm-2-1-6b-zephyr.hf.space", "https://qwen-qwen1-5-72b-chat.hf.space", "https://deepseek-ai-deepseek-coder-7b-instruct.hf.space", "https://01-ai-yi-34b-chat.hf.space", "https://ysharma-zephyr-playground.hf.space", "https://huggingfaceh4-zephyr-chat.hf.space", "https://osanseviero-mistral-super-fast.hf.space", "https://artificialguybr-qwen-14b-chat-demo.hf.space", "https://huggingface-projects-llama-2-7b-chat.hf.space", "https://ysharma-explore-llamav2-with-tgi.hf.space", "https://mosaicml-mpt-30b-chat.hf.space", "https://huggingfaceh4-falcon-chat.hf.space", "https://uwnlp-guanaco-playground-tgi.hf.space", "https://stabilityai-stablelm-tuned-alpha-chat.hf.space", "https://mosaicml-mpt-7b-storywriter.hf.space", "https://huggingfaceh4-starchat-playground.hf.space", "https://bigcode-bigcode-playground.hf.space", "https://mosaicml-mpt-7b-chat.hf.space", "https://huggingchat-chat-ui.hf.space", "https://togethercomputer-openchatkit.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
                chatspacebtn = gr.Button("Use the chosen URL to load interface with a chat model. For sdk.vercel click the chat button on the top left. For lymsys / chat arena copy the link and use a new tab")
            chatspace = gr.HTML("Chat Space Chosen will load here")
            chatspacebtn.click(display_website, inputs=linktochat, outputs=chatspace)

        with gr.Tab("Save files"):
            gr.HTML("For Dynamic events overnight or when player is not active what can LLMS edit? <br><br>eg. Waiting for a letter from a random npc can be decided by the llm <br>eg. Improved Stats on certain days (eg. bitrthday) <br>Privacy <br>User Directed DLC eg. Rockstar Editor with local llm guide")
            gr.HTML("Some ideas - In game websites eg. GTA esp stock markets, news; ")
            gr.HTML("Placeholder for huggingface spaces that can assist - https://huggingface.co/nvidia/Nemotron-4-340B-Instruct (Purpose is supposed to be synthetic data generation), https://huggingface.co/spaces/gokaygokay/Gemma-2-llamacpp ")
            gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist (9b and under) <br>initial floor for testing can be https://huggingface.co/spaces/Qwen/Qwen2-0.5B-Instruct, https://huggingface.co/spaces/Qwen/Qwen2-1.5b-instruct-demo, https://huggingface.co/spaces/stabilityai/stablelm-2-1_6b-zephyr, https://huggingface.co/spaces/IndexTeam/Index-1.9B, https://huggingface.co/microsoft/Phi-3-mini-4k-instruct")
            with gr.Tab("Diagrams"):
                gr.HTML("Claude 3.5 sonnet is very good with mermaid graphs - can used for maps, situational explanations")
            with gr.Tab("Maths"):
                gr.HTML("https://huggingface.co/spaces/AI-MO/math-olympiad-solver")

        with gr.Tab("Media Understanding"):
            gr.HTML("NPC Response Engines? Camera, Shopkeeper, Companion, Enemies, etc.")
            with gr.Accordion("Media understanding model Spaces/Sites (Click Here to Open)", open=False):
                with gr.Row():
                    linktomediaunderstandingspace = gr.Dropdown(choices=[ "--Weak Audio Understanding = Audio to text, Weak Video Understanding = Video to Image to Image Understanding", "https://skalskip-florence-2-video.hf.space", "https://kingnish-opengpt-4o.hf.space",
                                                                            "--Image Understanding--", "https://qnguyen3-nanollava.hf.space", "https://skalskip-better-florence-2.hf.space", ], 
                                                    label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
                    mediaunderstandingspacebtn = gr.Button("Use the chosen URL to load interface with a media understanding space")
                mediaunderstandingspace = gr.HTML("Mdeia Understanding Space Chosen will load here")
                mediaunderstandingspacebtn.click(display_website, inputs=linktomediaunderstandingspace, outputs=mediaunderstandingspace)


        with gr.Tab("Images"):
            with gr.Accordion("Image Gen or Animation HF Spaces/Sites (Click Here to Open) - Have to download and upload at the the top", open=False):
                # with gr.Tabs("General"):
                with gr.Row():
                    linktoimagegen = gr.Dropdown(choices=["Text-Interleaved", "https://ethanchern-anole.hf.space",
                                                            "--General--", "https://pixart-alpha-pixart-sigma.hf.space", "https://stabilityai-stable-diffusion-3-medium.hf.space", "https://prodia-sdxl-stable-diffusion-xl.hf.space", "https://prodia-fast-stable-diffusion.hf.space", "https://bytedance-hyper-sdxl-1step-t2i.hf.space",  "https://multimodalart-cosxl.hf.space", "https://cagliostrolab-animagine-xl-3-1.hf.space", "https://stabilityai-stable-diffusion.hf.space",
                                                            "--Speed--", "https://radames-real-time-text-to-image-sdxl-lightning.hf.space", "https://ap123-sdxl-lightning.hf.space",
                                                            "--LORA Support--", "https://artificialguybr-artificialguybr-demo-lora.hf.space", "https://artificialguybr-studio-ghibli-lora-sdxl.hf.space", "https://artificialguybr-pixel-art-generator.hf.space", "https://fffiloni-sdxl-control-loras.hf.space", "https://ehristoforu-dalle-3-xl-lora-v2.hf.space",
                                                            "--Image to Image--", "https://lllyasviel-ic-light.hf.space", "https://gparmar-img2img-turbo-sketch.hf.space",
                                                            "--Control of Pose--", "https://instantx-instantid.hf.space", "https://modelscope-transferanything.hf.space", "https://okaris-omni-zero.hf.space"
                                                            "--Control of Shapes--", "https://linoyts-scribble-sdxl-flash.hf.space",
                                                            "--Foreign Language Input--", "https://gokaygokay-kolors.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
                    imagegenspacebtn = gr.Button("Use the chosen URL to load interface with a image generation model")
            
                imagegenspace = gr.HTML("Image Space Chosen will load here")
                imagegenspacebtn.click(display_website, inputs=linktoimagegen, outputs=imagegenspace)
            
            linkstobecollectednoembed = "https://artgan-diffusion-api.hf.space", "https://multimodalart-stable-cascade.hf.space", "https://google-sdxl.hf.space", "https://visionmaze-magic-me.hf.space", "https://segmind-segmind-stable-diffusion.hf.space", "https://simianluo-latent-consistency-model.hf.space",
            gr.HTML("Concept Art, UI elements, Static/3D Characters, Environments and Objects")
            gr.HTML("Image Caption =  https://huggingface.co/spaces/microsoft/Promptist, https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner, https://huggingface.co/spaces/gokaygokay/Florence-2,  ")
            gr.HTML("Images Generation Portraits = https://huggingface.co/spaces/okaris/omni-zero")
            gr.HTML("Images Generation General (3rd Party) =  https://www.craiyon.com/")
            gr.HTML("Images Generation Posters with text - https://huggingface.co/spaces/GlyphByT5/Glyph-SDXL-v2")
            gr.HTML("Placeholder for huggingface spaces that can assist - https://huggingface.co/spaces/EPFL-VILAB/4M, https://huggingface.co/spaces/EPFL-VILAB/MultiMAE ")
            gr.HTML("SVG Generation = Coding models / SOTA LLM ")
            gr.HTML("Images Generation - Upscaling - https://huggingface.co/spaces/gokaygokay/Tile-Upscaler")
            gr.HTML("Vision Models for descriptions <br> https://huggingface.co/spaces/gokaygokay/Florence-2 <br>https://huggingface.co/spaces/vilarin/VL-Chatbox - glm 4v 9b <br>")
            gr.HTML("Upscalers (save data transfer costs? highly detailed characters?) - https://huggingface.co/spaces/gokaygokay/AuraSR")
            gr.HTML("Placeholder for huggingface spaces that can assist ")
            gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist")

        with gr.Tab("Video"):
            with gr.Accordion("Video Spaces/Sites (Click Here to Open)", open=False):
                with gr.Row():
                    linktovideogenspace = gr.Dropdown(choices=["--Genral--", "https://kadirnar-open-sora.hf.space",
                                                               "--Talking Portrait--", "https://fffiloni-tts-hallo-talking-portrait.hf.space",  
                                                             "--Gif / ImgtoImg based video--", "https://wangfuyun-animatelcm-svd.hf.space", "https://bytedance-animatediff-lightning.hf.space", "https://wangfuyun-animatelcm.hf.space", "https://guoyww-animatediff.hf.space",], 
                                                    label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
                    videogenspacebtn = gr.Button("Use the chosen URL to load interface with video generation")
                videogenspace = gr.HTML("Video Space Chosen will load here")
                videogenspacebtn.click(display_website, inputs=linktovideogenspace, outputs=videogenspace)

            gr.HTML("Cutscenes, Tutorials, Trailers")
            gr.HTML("Portrait Video eg. Solo Taking NPC - https://huggingface.co/spaces/fffiloni/tts-hallo-talking-portrait (Image + Audio and combination)  https://huggingface.co/spaces/KwaiVGI/LivePortrait (Non verbal communication eg. in a library, when running from a pursuer)")
            gr.HTML("Placeholder for huggingface spaces that can assist - https://huggingface.co/spaces/KingNish/Instant-Video, https://huggingface.co/spaces/multimodalart/stable-video-diffusion, https://huggingface.co/spaces/multimodalart/stable-video-diffusion")
            gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist")
            gr.HTML("3rd Party / Closed Source - https://runwayml.com/ <br>")
            with gr.Tab("Animations (for lower resource use)"):
                gr.HTML("Characters, Environments, Objects")
                gr.HTML("Placeholder for huggingface spaces that can assist - image as 3d object in video https://huggingface.co/spaces/ashawkey/LGM")
                gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist")

        with gr.Tab("Audio"):
            with gr.Accordion("Audio Spaces/Sites (Click Here to Open)", open=False):
                with gr.Row():
                    linktoaudiiogenspace = gr.Dropdown(choices=["General", "https://artificialguybr-stable-audio-open-zero.hf.space", "",
                                                                "--Talking Portrait--","https://fffiloni-tts-hallo-talking-portrait.hf.space"], 
                                                    label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
                    audiiogenspacebtn = gr.Button("Use the chosen URL to load interface with audio generation")
                audiiogenspace = gr.HTML("Audio Space Chosen will load here")
                audiiogenspacebtn.click(display_website, inputs=linktoaudiiogenspace, outputs=audiiogenspace)
            gr.HTML("Music - Background, Interactive, Cutscene, Menu <br>Sound Effects - Environment, character, action (environmental triggered by user eg. gun), UI <br>Speech - Dialouge, narration, voiceover <br>The new render function means the Config can be made and iframe/api functions can be ordered as neccessary based on the part of the config that needs it to streamline workflows based on current state of config ")
            gr.HTML("Placeholder for huggingface spaces that can assist")
            gr.HTML("Audio Sound Effects - https://huggingface.co/spaces/artificialguybr/Stable-Audio-Open-Zero")
            gr.HTML("Voices - Voice clone eg. actors part of your project - https://huggingface.co/spaces/tonyassi/voice-clone")
            gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist")
            gr.HTML("3rd Party / Closed Source - https://suno.com/ <br>https://www.udio.com/")

        with gr.Tab("3D"):
            with gr.Accordion("3D Model Spaces/Sites (Click Here to Open)", open=False):
                with gr.Row():
                    linktoThreedModel = gr.Dropdown(choices=["https://wuvin-unique3d.hf.space", "https://stabilityai-triposr.hf.space", "https://hysts-shap-e.hf.space", "https://tencentarc-instantmesh.hf.space", "https://ashawkey-lgm.hf.space", "https://dylanebert-lgm-mini.hf.space", "https://dylanebert-splat-to-mesh.hf.space", "https://dylanebert-multi-view-diffusion.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
                    ThreedModelspacebtn = gr.Button("Use the chosen URL to load interface with a 3D model")
                ThreedModelspace = gr.HTML("3D Space Chosen will load here")
                ThreedModelspacebtn.click(display_website, inputs=linktoThreedModel, outputs=ThreedModelspace)
            gr.HTML("Characters, Environments, Objects")
            gr.HTML("Placeholder for huggingface spaces that can assist - https://huggingface.co/spaces/dylanebert/3d-arena")
            gr.HTML("Closed Source - https://www.meshy.ai/")

        with gr.Tab("Fonts"):
            gr.HTML("Style of whole game, or locations, or characters")
            gr.HTML("Placeholder for huggingface spaces that can assist - there was a space that could make letter into pictures based on the prompt but I cant find it now")
            gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist")
        
        with gr.Tab("Shaders and related"):
            gr.HTML("Any output that is not understood by the common person can be used as special effects eg. depth map filters on images etc.")
            gr.HTML("Post-processing Effects, material effects, Particle systems, visual feedback")
            gr.HTML("Visual Effects - eg. explosion can turn all items white for a moment, losing conciousness blurs whole screen")
            gr.HTML("Placeholder for huggingface spaces that can assist - https://huggingface.co/spaces/EPFL-VILAB/4M, https://huggingface.co/spaces/EPFL-VILAB/MultiMAE ")
            gr.HTML("Placeholder for models small enough to run on cpu here in this space that can assist")

        with gr.Tab("Demos on Social Media for inspiration"):
            gr.HTML("Social media that shows possiblities")
            gr.HTML("https://x.com/blizaine")

    with gr.Tab("Basic Game Engine Mechanics"):
        gr.HTML("Placeholder for explanations of Player and Game Session")

    with gr.Tab("LLM play testing"):
        gr.HTML("LLM can read the contents in full and give critiques but they can also play the game if you make a api interface - gradio allows this in the form of gradio client but you can also reroute the user inputs to function calling")

    with gr.Tab("Custom JS Config Creator"):
        gr.HTML("-- Incomplete -- Companion Space for zerogpu / client api workflow planning for a way to send a zip to the Basic Game Engine at the bottom of https://huggingface.co/spaces/KwabsHug/TestSvelteStatic (Also to test how much can be done majority on cpu)")
        with gr.Tab("Simple Config Creator"):
            inventory_items = gr.State([])
            skills_items = gr.State([])
            objectives_items = gr.State([])
            targets_items = gr.State([])

            with gr.Tabs():
                with gr.TabItem("Inventory"):
                    inventory_type = gr.Textbox(label="Type")
                    inventory_name = gr.Textbox(label="Name")
                    inventory_description = gr.Textbox(label="Description")
                    add_inventory = gr.Button("Add Inventory Item")
                    inventory_textbox = gr.JSON(label="Inventory Items", value=[])

                with gr.TabItem("Skills"):
                    skills_branch = gr.Textbox(label="Branch")
                    skills_name = gr.Textbox(label="Name")
                    skills_learned = gr.Dropdown(choices=["True", "False"], label="Learned")
                    add_skill_button = gr.Button("Add Skill")
                    skills_textbox = gr.JSON(label="Skills", value=[])

                with gr.TabItem("Objectives"):
                    objectives_id = gr.Textbox(label="ID")
                    objectives_name = gr.Textbox(label="Name")
                    objectives_complete = gr.Dropdown(choices=["True", "False"], label="Complete")
                    add_objective_button = gr.Button("Add Objective")
                    objectives_textbox = gr.JSON(label="Objectives", value=[])

                with gr.TabItem("Targets"):
                    targets_name = gr.Textbox(label="Name")
                    targets_x = gr.Textbox(label="X Coordinate")
                    targets_y = gr.Textbox(label="Y Coordinate")
                    targets_collisionType = gr.Textbox(label="Collision Type")
                    targets_collisiontext = gr.Textbox(label="Collision Text")
                    add_target_button = gr.Button("Add Target")
                    targets_textbox = gr.JSON(label="Targets", value=[])

                with gr.TabItem("Placeholders for Modal Target"):
                    gr.HTML("Placeholder")

                with gr.TabItem("Placeholders for State Machine Modal Target"):
                    gr.HTML("Placeholder")

                with gr.TabItem("Placeholders for Background"):
                    gr.HTML("Placeholder")

            config_output = gr.JSON(label="Updated Configuration")

            @gr.render(inputs=[inventory_items, skills_items, objectives_items, targets_items]) #, outputs=config_output)
            def aggregate_config(inventory, skills, objectives, targets):
                config = default_config.copy()
                config['inventory'] = inventory
                config['skills'] = skills
                config['objectives'] = objectives
                config['targets'] = targets
                return config

            add_inventory.click(add_inventory_item, inputs=[inventory_items, inventory_type, inventory_name, inventory_description], outputs=inventory_textbox)
            add_inventory.click(aggregate_config, inputs=[inventory_items, skills_items, objectives_items, targets_items], outputs=config_output)

            add_skill_button.click(add_skill, inputs=[skills_items, skills_branch, skills_name, skills_learned], outputs=skills_textbox)
            add_skill_button.click(aggregate_config, inputs=[inventory_items, skills_items, objectives_items, targets_items], outputs=config_output)

            add_objective_button.click(add_objective, inputs=[objectives_items, objectives_id, objectives_name, objectives_complete], outputs=objectives_textbox)
            add_objective_button.click(aggregate_config, inputs=[inventory_items, skills_items, objectives_items, targets_items], outputs=config_output)

            add_target_button.click(add_target, inputs=[targets_items, targets_name, targets_x, targets_y, targets_collisionType, targets_collisiontext], outputs=targets_textbox)
            add_target_button.click(aggregate_config, inputs=[inventory_items, skills_items, objectives_items, targets_items], outputs=config_output)
        
        with gr.Tab("Advanced Config Creator"):
            gr.HTML("Config with More than text and images")
                    
    with gr.Tab("LLM/Robotics as custom controllers Considerations"):
        gr.HTML("Controls changed the scope of the game eg. mouse vs keyboard vs console controller vs remote vs touch screen <br>LLM can be vision/surveilance based controler (eg. MGS/GTA camera gauged by an actual camera in real life) or it can be a companion (offline/off console game progrssion ideas)")
        gr.HTML("Robotics - https://github.com/OpenTeleVision/TeleVision https://www.stereolabs.com/")

    with gr.Tab("Other Considerations"):
        with gr.Tab("General"):
            gr.HTML("Experiment for https://huggingface.co/spaces/ysharma/open-interpreter/blob/main/app.py inplementation with gradio client api")
            gr.HTML("Some conderations for future integration: https://huggingface.co/spaces/dylanebert/3d-arena, https://github.com/fudan-generative-vision/hallo")

            gr.HTML("Useful Spaces and links: https://huggingface.co/spaces/artificialguybr/Stable-Audio-Open-Zero https://huggingface.co/spaces/stabilityai/TripoSR https://huggingface.co/spaces/wangfuyun/AnimateLCM-SVD https://huggingface.co/spaces/multimodalart/face-to-all https://huggingface.co/spaces/facebook/MusicGen https://huggingface.co/spaces/Doubiiu/tooncrafter")
            
            gr.HTML("langchain docs as awareness for alot of the integration use cases and providers that are possible - https://python.langchain.com/v0.2/docs/integrations/tools/")

            gr.HTML("https://huggingface.co/spaces/linoyts/scribble-sdxl-flash as map planner")

            gr.HTML("---------------------------------------Gameplay Ideas-------------------------------")
            gr.HTML("https://huggingface.co/spaces/Lin-Chen/ShareCaptioner-Video - game use example police questions a event with multiple eye witnesses needs to give as close to the caption description to win")
        with gr.Tab("State management through huggingface?"):
            gr.HTML("Huggingface as the login provider? - https://huggingface.co/docs/hub/en/spaces-oauth https://huggingface.co/docs/hub/en/oauth, persistent storage - https://huggingface.co/docs/hub/en/spaces-storage")
        with gr.Tab("Finetuning options"):
            gr.HTML("Price - https://openpipe.ai/pricing")
        with gr.Tab("Backend and/or Hosting?"):
            gr.HTML("Prototyping and freemium <br>free api <br>HF Pro subscription")
            gr.HTML("GPU (Data privacy) = No Rate limits? - https://replicate.com/pricing, https://lambdalabs.com/service/gpu-cloud https://huggingface.co/pricing#endpoints https://tensordock.com/cloud-gpus")
            gr.HTML("Speed - Groq, SambaNova, https://www.etched.com/announcing-etched ")
            gr.HTML("Price - Coding - https://aider.chat/docs/leaderboards/ -  https://www.deepseek.com/ 0.3 per million - is this per token or chinese character as that means converting code to chinese if possible can save api cost?")
    with gr.Tab("Asset loading test"):
        gr.HTML("SDXL (linoyts/scribble-sdxl-flash), SVD and Stable Audio used for the test assets (For commercial use need a licence)")
        with gr.Row():
            gr.Image(value="testmedia/Flash scribble SDXL - random squiggles as roads.webp")
            gr.Video(value="testmedia/SVD - random squiggles as roads video 004484.mp4")
            gr.Audio(value="testmedia/Stable Audio - Raindrops, output.wav")
        gr.HTML(TestmedialoadinHTML) # imported from relatively_constant_variables

demo.queue().launch()