File size: 7,748 Bytes
d5f497d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4fa96f
 
 
 
 
 
 
 
 
 
 
d5f497d
 
 
 
 
7870848
d5f497d
 
 
 
 
 
 
 
 
 
 
7870848
 
 
d5f497d
 
7870848
d5f497d
 
 
 
 
 
 
 
 
 
 
 
 
2225ed3
d5f497d
2225ed3
d5f497d
 
 
 
 
 
 
 
 
 
 
2225ed3
 
 
d5f497d
 
 
 
2225ed3
d5f497d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4fa96f
d5f497d
d4fa96f
 
d5f497d
 
 
 
d4fa96f
d5f497d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import spaces
import random
import torch
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from kolors.pipelines import pipeline_stable_diffusion_xl_chatglm_256_ipadapter, pipeline_stable_diffusion_xl_chatglm_256
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models import unet_2d_condition
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
import gradio as gr
import numpy as np

device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_IPA_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet_t2i = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
unet_i2i = unet_2d_condition.UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/image_encoder',ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)

pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline(
    vae=vae,
    text_encoder=text_encoder, 
    tokenizer=tokenizer, 
    unet=unet_t2i, 
    scheduler=scheduler, 
    force_zeros_for_empty_prompt=False
).to(device)

pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet_i2i,
    scheduler=scheduler,
    image_encoder=image_encoder,
    feature_extractor=clip_image_processor,
    force_zeros_for_empty_prompt=False
).to(device)

if hasattr(pipe_i2i.unet, 'encoder_hid_proj'):
    pipe_i2i.unet.text_encoder_hid_proj = pipe_i2i.unet.encoder_hid_proj
    
pipe_i2i.load_ip_adapter(f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU
def infer(prompt, 
          ip_adapter_image = None, 
          ip_adapter_scale = 0.5, 
          negative_prompt = "", 
          seed = 0, 
          randomize_seed = True, 
          width = 1024, 
          height = 1024, 
          guidance_scale = 5.0, 
          num_inference_steps = 25
          ):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    if ip_adapter_image is None:
        pipe_t2i.to(device)
        image = pipe_t2i(
            prompt = prompt, 
            negative_prompt = negative_prompt,
            guidance_scale = guidance_scale, 
            num_inference_steps = num_inference_steps, 
            width = width, 
            height = height,
            generator = generator
        ).images[0] 
        return image
    else:
        pipe_i2i.to(device)
        image_encoder.to(device)
        pipe_i2i.image_encoder = image_encoder
        pipe_i2i.set_ip_adapter_scale([ip_adapter_scale])
        image = pipe_i2i(
                prompt=prompt ,
                ip_adapter_image=[ip_adapter_image],
                negative_prompt=negative_prompt, 
                height=height,
                width=width,
                num_inference_steps=num_inference_steps, 
                guidance_scale=guidance_scale,
                num_images_per_prompt=1,
                generator=generator
            ).images[0]
        return image

examples = [
    ["一张瓢虫的照片,微距,变焦,高质量,电影,拿着一个牌子,写着“可图”", None, None],
    ["3D anime style, hyperrealistic oil painting, dolphin leaping out of the water", None, None],
    ["穿着黑色T恤衫,上面中文绿色大字写着“可图”", "image/test_ip.jpg", 0.5],
    ["A cute dog is running.", "image/test_ip2.png", 0.5]
]

css="""
#col-left {
    margin: 0 auto;
    max-width: 500px;
}
#col-right {
    margin: 0 auto;
    max-width: 750px;
}
#title {
    margin: 0 auto;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column(elem_id='title'):
            gr.Markdown(f"""
            # Kolors
            """)
        
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    show_label=False,
                    placeholder="Enter your prompt",
                    container=False,
                )
                run_button = gr.Button("Run", scale=0)
            with gr.Row():
                ip_adapter_image = gr.Image(label="IP-Adapter Image (optional)", type="pil")
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=5.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=25,
                    )
                with gr.Row():
                    ip_adapter_scale = gr.Slider(
                        label="Image influence scale",
                        info="Use 1 for creating variations",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.05,
                        value=0.5,
                    )
            
        with gr.Column(elem_id="col-right"):
            result = gr.Image(label="Result", show_label=False)
    
    with gr.Row():
        gr.Examples(
                fn = infer,
                examples = examples,
                inputs = [prompt, ip_adapter_image, ip_adapter_scale],
                outputs = [result]
            )

    run_button.click(
        fn = infer,
        inputs = [prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result]
    )

demo.queue().launch(debug=True)