# model.py file import torch import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.bn1(self.conv1(x))) x = self.relu(self.bn2(self.conv2(x))) return x class ResNet(nn.Module): def __init__(self, block, num_classes=10): super(ResNet, self).__init__() self.preparation = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU() ) self.layer1 = nn.Sequential( nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False), nn.MaxPool2d(2, 2), nn.BatchNorm2d(128), nn.ReLU() ) self.residual1 = block(128, 128, 1) self.layer2 = nn.Sequential( nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.MaxPool2d(2, 2), nn.BatchNorm2d(256), nn.ReLU() ) self.layer3 = nn.Sequential( nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.MaxPool2d(2, 2), nn.BatchNorm2d(512), nn.ReLU() ) self.residual3 = block(512, 512, 1) self.maxpool2d = nn.MaxPool2d(4, 4) self.fc = nn.Linear(512, num_classes) def forward(self, x): x = self.preparation(x) x = self.layer1(x) res1 = self.residual1(x) x = x + res1 x = self.layer2(x) x = self.layer3(x) res3 = self.residual3(x) x = x + res3 x = self.maxpool2d(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def Custom_ResNet(): return ResNet(BasicBlock, num_classes=10)