import requests import numpy as np import gradio as gr ## CLIP from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") def inference(input_img=None, input_text=None): if input_img is not None and input_text is not None: inputs = processor(text=input_text.split(","), images=input_img, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities output_prob = ', '.join([str(probs.detach().numpy()[0][i]) for i in range(np.shape(probs.detach().numpy()[0])[0])]) else: output_prob = None return output_prob title = "CLIP OpenAI model" description = "A simple Gradio interface to find similarity between images and text" text_examples = ["A man and a dog, A man wearing a blue coat with a dog inside", "Train tracks and a train, A dog playing in the field", "An outdoor seating glass box, A movie theater", "A building, A building and multiple cars on the road", "A living area, Planet earth", "A dining room, A football stadium", "A red car, A yellow car", "A chair and a book, A building falling", "A man and a horse, A child playing with a dog", "A man and a horse, A child playing with a dog" ] examples = [['examples/test_'+str(i)+'.jpg', text_examples[i]] for i in range(10)] demo = gr.Interface(inference, inputs = [gr.Image(label="Input image"), gr.Textbox(placeholder="Input text (Multiple entries separated by commas)")], outputs = [gr.Textbox(label="Similarity score between the input image and input text")], title = title, description = description, examples = examples ) demo.launch()