File size: 14,390 Bytes
81d8e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/models/mutual_self_attention.py

import torch
import torch.nn.functional as F
import random
from einops import rearrange
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

from diffusers.models.attention import BasicTransformerBlock
from .attention import BasicTransformerBlock as _BasicTransformerBlock

def torch_dfs(model: torch.nn.Module):
    result = [model]
    for child in model.children():
        result += torch_dfs(child)
    return result

def calc_mean_std(feat, eps: float = 1e-5):
    feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt()
    feat_mean = feat.mean(dim=-2, keepdims=True)
    return feat_mean, feat_std

class ReferenceNetAttention():
    
    def __init__(self, 

                 unet,

                 mode="write",

                 do_classifier_free_guidance=False,

                 attention_auto_machine_weight = float('inf'),

                 gn_auto_machine_weight = 1.0,

                 style_fidelity = 1.0,

                 reference_attn=True,

                 fusion_blocks="full",

                 batch_size=1, 

                 is_image=False,

                 ) -> None:
        # 10. Modify self attention and group norm
        self.unet = unet
        assert mode in ["read", "write"]
        assert fusion_blocks in ["midup", "full"]
        self.reference_attn = reference_attn
        self.fusion_blocks = fusion_blocks
        self.register_reference_hooks(
            mode, 
            do_classifier_free_guidance,
            attention_auto_machine_weight,
            gn_auto_machine_weight,
            style_fidelity,
            reference_attn,
            fusion_blocks,
            batch_size=batch_size, 
            is_image=is_image,
        )



    def register_reference_hooks(

            self, 

            mode, 

            do_classifier_free_guidance,

            attention_auto_machine_weight,

            gn_auto_machine_weight,

            style_fidelity,

            reference_attn,

            # dtype=torch.float16,

            dtype=torch.float32,

            batch_size=1, 

            num_images_per_prompt=1, 

            device=torch.device("cpu"), 

            fusion_blocks='midup',

            is_image=False,

        ):
        MODE = mode
        do_classifier_free_guidance = do_classifier_free_guidance
        attention_auto_machine_weight = attention_auto_machine_weight
        gn_auto_machine_weight = gn_auto_machine_weight
        style_fidelity = style_fidelity
        reference_attn = reference_attn
        fusion_blocks = fusion_blocks
        num_images_per_prompt = num_images_per_prompt
        dtype=dtype
        if do_classifier_free_guidance:
            uc_mask = (
                torch.Tensor([1] * batch_size * num_images_per_prompt * 16 + [0] * batch_size * num_images_per_prompt * 16)
                .to(device)
                .bool()
            )
        else:
            uc_mask = (
                torch.Tensor([0] * batch_size * num_images_per_prompt * 2)
                .to(device)
                .bool()
            )
        
        def hacked_basic_transformer_inner_forward(

            self,

            hidden_states: torch.FloatTensor,

            attention_mask: Optional[torch.FloatTensor] = None,

            encoder_hidden_states: Optional[torch.FloatTensor] = None,

            encoder_attention_mask: Optional[torch.FloatTensor] = None,

            timestep: Optional[torch.LongTensor] = None,

            cross_attention_kwargs: Dict[str, Any] = None,

            class_labels: Optional[torch.LongTensor] = None,

            video_length=None,

        ):
            if self.use_ada_layer_norm:
                norm_hidden_states = self.norm1(hidden_states, timestep)
            elif self.use_ada_layer_norm_zero:
                norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                    hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
                )
            else:
                norm_hidden_states = self.norm1(hidden_states)

            # 1. Self-Attention
            cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
            if self.only_cross_attention:
                attn_output = self.attn1(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                    attention_mask=attention_mask,
                    **cross_attention_kwargs,
                )
            else:
                if MODE == "write":
                    self.bank.append(norm_hidden_states.clone())
                    attn_output = self.attn1(
                        norm_hidden_states,
                        encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                        attention_mask=attention_mask,
                        **cross_attention_kwargs,
                    )
                if MODE == "read":
                    if not is_image:
                        self.bank = [rearrange(d.unsqueeze(1).repeat(1, video_length, 1, 1), "b t l c -> (b t) l c")[:hidden_states.shape[0]] for d in self.bank]

                    

                    modify_norm_hidden_states = torch.cat([norm_hidden_states] + self.bank, dim=1)                    
                    hidden_states_uc = self.attn1(modify_norm_hidden_states, 
                                                encoder_hidden_states=modify_norm_hidden_states,
                                                attention_mask=attention_mask)[:,:hidden_states.shape[-2],:] #+ hidden_states
                    
                    hidden_states_raw = self.attn1(norm_hidden_states, 
                                                encoder_hidden_states=norm_hidden_states,
                                                attention_mask=attention_mask) #+ hidden_states        


                    ratio = 0.5
                    hidden_states_uc  =  hidden_states_uc * ratio + hidden_states_raw * (1-ratio) + hidden_states        
                    hidden_states_c = hidden_states_uc.clone()
                    _uc_mask = uc_mask.clone()
                    if do_classifier_free_guidance:
                        if hidden_states.shape[0] != _uc_mask.shape[0]:
                            _uc_mask = (
                                torch.Tensor([1] * (hidden_states.shape[0]//2) + [0] * (hidden_states.shape[0]//2))
                                .to(device)
                                .bool()
                            )
                        hidden_states_c[_uc_mask] = self.attn1(
                            norm_hidden_states[_uc_mask],
                            encoder_hidden_states=norm_hidden_states[_uc_mask],
                            attention_mask=attention_mask,
                        )   + hidden_states[_uc_mask]

                    
                    # randomly drop the reference attention during training
                    else:  
                        mask_index = [0 for _ in range(hidden_states_c.shape[0])]
                        for i in range( int(hidden_states_c.shape[0] * 0.25)):
                            mask_index[i] = 1

                        _uc_mask = (
                            torch.Tensor(mask_index)
                            .to(device)
                            .bool()
                        )

                        hidden_states_c[_uc_mask] = self.attn1(
                            norm_hidden_states[_uc_mask],
                            encoder_hidden_states=norm_hidden_states[_uc_mask],
                            attention_mask=attention_mask,
                        ) + hidden_states[_uc_mask]
                    
                        
                    hidden_states = hidden_states_c.clone()                        
                    # self.bank.clear()
                    if self.attn2 is not None:
                        # Cross-Attention
                        norm_hidden_states = (
                            self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
                        )
                        hidden_states = (
                            self.attn2(
                                norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
                            )
                            + hidden_states
                        )

                    # Feed-forward
                    hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states

                    # Temporal-Attention
                    if not is_image:
                        if self.unet_use_temporal_attention:
                            d = hidden_states.shape[1]
                            hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
                            norm_hidden_states = (
                                self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
                            )
                            hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
                            hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)

                    return hidden_states
                
            if self.use_ada_layer_norm_zero:
                attn_output = gate_msa.unsqueeze(1) * attn_output
            hidden_states = attn_output + hidden_states

            if self.attn2 is not None:
                norm_hidden_states = (
                    self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
                )

                # 2. Cross-Attention
                attn_output = self.attn2(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=encoder_attention_mask,
                    **cross_attention_kwargs,
                )
                hidden_states = attn_output + hidden_states

            # 3. Feed-forward
            norm_hidden_states = self.norm3(hidden_states)

            if self.use_ada_layer_norm_zero:
                norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

            ff_output = self.ff(norm_hidden_states)

            if self.use_ada_layer_norm_zero:
                ff_output = gate_mlp.unsqueeze(1) * ff_output

            hidden_states = ff_output + hidden_states

            return hidden_states

        if self.reference_attn:
            if self.fusion_blocks == "midup":
                attn_modules = [module for module in (torch_dfs(self.unet.mid_block)+torch_dfs(self.unet.up_blocks)) if isinstance(module, BasicTransformerBlock) or isinstance(module, _BasicTransformerBlock)]
            elif self.fusion_blocks == "full":
                attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock) or isinstance(module, _BasicTransformerBlock)]            
            attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])

            for i, module in enumerate(attn_modules):
                module._original_inner_forward = module.forward
                module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
                module.bank = []
                module.attn_weight = float(i) / float(len(attn_modules))
    
    # def update(self, writer, dtype=torch.float16):
    def update(self, writer, dtype=torch.float32):
        if self.reference_attn:
            if self.fusion_blocks == "midup":
                reader_attn_modules = [module for module in (torch_dfs(self.unet.mid_block)+torch_dfs(self.unet.up_blocks)) if isinstance(module, _BasicTransformerBlock) or isinstance(module, BasicTransformerBlock)]
                writer_attn_modules = [module for module in (torch_dfs(writer.unet.mid_block)+torch_dfs(writer.unet.up_blocks)) if isinstance(module, _BasicTransformerBlock) or isinstance(module, BasicTransformerBlock)]
            elif self.fusion_blocks == "full":
                reader_attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, _BasicTransformerBlock) or isinstance(module, BasicTransformerBlock)]
                writer_attn_modules = [module for module in torch_dfs(writer.unet) if isinstance(module, _BasicTransformerBlock) or isinstance(module, BasicTransformerBlock)]
            reader_attn_modules = sorted(reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0])    
            writer_attn_modules = sorted(writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
        
            if len(reader_attn_modules) == 0:
                print('reader_attn_modules is null')
                assert False
            if len(writer_attn_modules) == 0:
                print('writer_attn_modules is null')
                assert False
              
            for r, w in zip(reader_attn_modules, writer_attn_modules):
                r.bank = [v.clone().to(dtype) for v in w.bank]
                # w.bank.clear()
    
    def clear(self):
        if self.reference_attn:
            if self.fusion_blocks == "midup":
                reader_attn_modules = [module for module in (torch_dfs(self.unet.mid_block)+torch_dfs(self.unet.up_blocks)) if isinstance(module, BasicTransformerBlock) or isinstance(module, _BasicTransformerBlock)]
            elif self.fusion_blocks == "full":
                reader_attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock) or isinstance(module, _BasicTransformerBlock)]
            reader_attn_modules = sorted(reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
            for r in reader_attn_modules:
                r.bank.clear()