Spaces:
Sleeping
Sleeping
from typing import Tuple | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.nn.init as init | |
from diffusers.models.modeling_utils import ModelMixin | |
import torch | |
class Conv2d(nn.Conv2d): | |
def forward(self, x): | |
x = super().forward(x) | |
return x | |
class DepthGuider(ModelMixin): | |
def __init__( | |
self, | |
conditioning_embedding_channels: int=4, | |
conditioning_channels: int = 1, | |
block_out_channels: Tuple[int] = (16, 32, 64, 128), | |
): | |
super().__init__() | |
self.conv_in = Conv2d( | |
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1 | |
) | |
self.blocks = nn.ModuleList([]) | |
for i in range(len(block_out_channels) - 1): | |
channel_in = block_out_channels[i] | |
channel_out = block_out_channels[i + 1] | |
self.blocks.append( | |
Conv2d(channel_in, channel_in, kernel_size=3, padding=1) | |
) | |
self.blocks.append( | |
Conv2d( | |
channel_in, channel_out, kernel_size=3, padding=1, stride=2 | |
) | |
) | |
self.conv_out = Conv2d( | |
block_out_channels[-1], | |
conditioning_embedding_channels, | |
kernel_size=3, | |
padding=1, | |
) | |
def forward(self, conditioning): | |
conditioning = F.interpolate(conditioning, size=(512,512), mode = 'bilinear', align_corners=True) | |
embedding = self.conv_in(conditioning) | |
embedding = F.silu(embedding) | |
for block in self.blocks: | |
embedding = block(embedding) | |
embedding = F.silu(embedding) | |
embedding = self.conv_out(embedding) | |
return embedding |