Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,97 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import os
|
3 |
-
import
|
4 |
-
import
|
|
|
5 |
import pandas as pd
|
|
|
6 |
import requests
|
7 |
-
import io
|
8 |
-
from transformers import MarianMTModel, MarianTokenizer
|
9 |
-
from gradio_client import Client
|
10 |
-
|
11 |
-
# Initialize Gradio Client for Whisper JAX
|
12 |
-
client = Client(src="sanchit-gandhi/whisper-jax")
|
13 |
-
|
14 |
-
def fetch_languages(url):
|
15 |
-
response = requests.get(url)
|
16 |
-
if response.status_code == 200:
|
17 |
-
csv_content = response.content.decode('utf-8')
|
18 |
-
df = pd.read_csv(io.StringIO(csv_content), delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all')
|
19 |
-
df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name']
|
20 |
-
df['ISO 639-1'] = df['ISO 639-1'].str.strip()
|
21 |
-
language_options = [(row['ISO 639-1'], f"{row['ISO 639-1']} - {row['Language Name']}") for index, row in df.iterrows()]
|
22 |
-
return language_options
|
23 |
-
else:
|
24 |
-
return []
|
25 |
-
|
26 |
-
def transcript_audio(audio_file, task, return_timestamps, api_name="/predict_1"):
|
27 |
-
prediction = client.predict(audio_file=audio_file, task=task, return_timestamps=return_timestamps, api_name=api_name)
|
28 |
-
return prediction['transcription'], prediction['transcription_time_s']
|
29 |
-
|
30 |
-
def process_video(input_video, video_language, target_language):
|
31 |
-
transcription, _ = transcript_audio(input_video, "transcribe", True)
|
32 |
-
srt_path = text_to_srt(transcription)
|
33 |
-
translated_srt_path = translate_srt(srt_path, video_language, target_language)
|
34 |
-
output_video = add_subtitle_to_video(input_video, translated_srt_path)
|
35 |
-
return output_video
|
36 |
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from faster_whisper import WhisperModel
|
3 |
+
import logging
|
4 |
import os
|
5 |
+
from moviepy.editor import VideoFileClip
|
6 |
+
import ffmpeg # Make sure to install ffmpeg-python
|
7 |
+
from transformers import MarianMTModel, MarianTokenizer
|
8 |
import pandas as pd
|
9 |
+
import pysrt
|
10 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Configure logging for debugging purposes
|
13 |
+
logging.basicConfig()
|
14 |
+
logging.getLogger("faster_whisper").setLevel(logging.DEBUG)
|
15 |
+
|
16 |
+
# Fetch and parse language options from the provided URL
|
17 |
+
url = "https://huggingface.co/Lenylvt/LanguageISO/resolve/main/iso.md"
|
18 |
+
df = pd.read_csv(url, delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all')
|
19 |
+
df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name']
|
20 |
+
df['ISO 639-1'] = df['ISO 639-1'].str.strip()
|
21 |
|
22 |
+
# Prepare language options for the dropdown
|
23 |
+
language_options = [(row['ISO 639-1'], f"{row['Language Name']} ({row['ISO 639-1']})") for index, row in df.iterrows()]
|
24 |
+
|
25 |
+
def format_timestamp(seconds):
|
26 |
+
"""Convert seconds to HH:MM:SS.mmm format."""
|
27 |
+
hours = int(seconds // 3600)
|
28 |
+
minutes = int((seconds % 3600) // 60)
|
29 |
+
seconds_remainder = seconds % 60
|
30 |
+
return f"{hours:02d}:{minutes:02d}:{seconds_remainder:06.3f}"
|
31 |
+
|
32 |
+
def extract_audio(video_path):
|
33 |
+
"""Extract audio from video to a temporary audio file."""
|
34 |
+
output_audio_path = '/tmp/audio.wav'
|
35 |
+
ffmpeg.input(video_path).output(output_audio_path, acodec='pcm_s16le', ac=1, ar='16k').run(quiet=True)
|
36 |
+
return output_audio_path
|
37 |
+
|
38 |
+
def transcribe_and_optionally_translate(video_file, source_language, target_language, model_size, allow_modification):
|
39 |
+
audio_file = extract_audio(video_file)
|
40 |
+
|
41 |
+
# Transcription
|
42 |
+
device = "cpu"
|
43 |
+
compute_type = "int8"
|
44 |
+
model = WhisperModel(model_size, device=device, compute_type=compute_type)
|
45 |
+
segments, _ = model.transcribe(audio_file, source_language=source_language)
|
46 |
+
transcription = " ".join([segment.text for segment in segments])
|
47 |
+
|
48 |
+
# Translation
|
49 |
+
if source_language != target_language:
|
50 |
+
model_name = f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"
|
51 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
52 |
+
model = MarianMTModel.from_pretrained(model_name)
|
53 |
+
translated = model.generate(**tokenizer(transcription, return_tensors="pt", padding=True, truncation=True, max_length=512))
|
54 |
+
transcription = tokenizer.decode(translated[0], skip_special_tokens=True)
|
55 |
+
|
56 |
+
return transcription, allow_modification
|
57 |
+
|
58 |
+
def add_hard_subtitle_to_video(input_video, transcript):
|
59 |
+
"""Add hard subtitles to video."""
|
60 |
+
temp_subtitle_path = '/tmp/subtitle.srt'
|
61 |
+
with open(temp_subtitle_path, 'w', encoding='utf-8') as file:
|
62 |
+
file.write(transcript) # Assuming transcript is in SRT format
|
63 |
+
|
64 |
+
output_video_path = f"/tmp/output_video.mp4"
|
65 |
+
ffmpeg.input(input_video).output(output_video_path, vf=f"subtitles={temp_subtitle_path}").run(quiet=True)
|
66 |
+
|
67 |
+
return output_video_path
|
68 |
+
|
69 |
+
# Gradio Interface
|
70 |
+
def process_video(video, source_language, target_language, model_size='base', allow_modification=False, modified_transcript=None):
|
71 |
+
transcript, can_modify = transcribe_and_optionally_translate(video, source_language, target_language, model_size, allow_modification)
|
72 |
+
|
73 |
+
if can_modify and modified_transcript:
|
74 |
+
transcript = modified_transcript # Use the modified transcript if provided
|
75 |
+
|
76 |
+
# Add hard subtitles to the video
|
77 |
+
output_video = add_hard_subtitle_to_video(video, transcript)
|
78 |
+
return output_video
|
79 |
|
80 |
+
# Setup the Gradio app
|
81 |
+
app = gr.Interface(
|
82 |
+
fn=process_video,
|
83 |
+
inputs=[
|
84 |
+
gr.Video(label="Upload Video"),
|
85 |
+
gr.Dropdown(choices=language_options, label="Source Language"),
|
86 |
+
gr.Dropdown(choices=language_options, label="Target Language"),
|
87 |
+
gr.Dropdown(choices=["base", "small", "medium", "large", "large-v2", "large-v3"], label="Model Size"),
|
88 |
+
gr.Checkbox(label="Allow Transcript Modification?", value=False),
|
89 |
+
gr.TextArea(label="Modified Transcript (if allowed)")
|
90 |
+
],
|
91 |
+
outputs=gr.Video(label="Processed Video with Hard Subtitles"),
|
92 |
+
title="Video Transcription and Translation Tool",
|
93 |
+
description="Transcribe or translate your video content. Optionally, edit the transcription before adding hard subtitles."
|
94 |
+
)
|
95 |
|
96 |
+
if __name__ == "__main__":
|
97 |
+
app.launch()
|