Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,134 @@
|
|
1 |
import gradio as gr
|
2 |
from faster_whisper import WhisperModel
|
3 |
import logging
|
4 |
-
|
|
|
5 |
import pandas as pd
|
6 |
-
import
|
7 |
import ffmpeg
|
8 |
|
9 |
-
#
|
10 |
-
logging.basicConfig()
|
11 |
-
logging.getLogger("faster_whisper").setLevel(logging.DEBUG)
|
12 |
-
|
13 |
-
# Fetch and parse language options from the provided URL
|
14 |
url = "https://huggingface.co/Lenylvt/LanguageISO/resolve/main/iso.md"
|
15 |
df = pd.read_csv(url, delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all')
|
16 |
df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name']
|
17 |
df['ISO 639-1'] = df['ISO 639-1'].str.strip()
|
18 |
|
19 |
-
# Prepare language options for the dropdown
|
20 |
language_options = [(row['ISO 639-1'], f"{row['ISO 639-1']}") for index, row in df.iterrows()]
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
38 |
model = MarianMTModel.from_pretrained(model_name)
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
return output_video
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
title="Video Transcription and Translation Tool",
|
81 |
-
description="Transcribe or translate your video content. Optionally, edit the transcription before adding hard subtitles."
|
82 |
-
)
|
83 |
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
86 |
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from faster_whisper import WhisperModel
|
3 |
import logging
|
4 |
+
import os
|
5 |
+
import pysrt
|
6 |
import pandas as pd
|
7 |
+
from transformers import MarianMTModel, MarianTokenizer
|
8 |
import ffmpeg
|
9 |
|
10 |
+
# Configuration initiale et chargement des données
|
|
|
|
|
|
|
|
|
11 |
url = "https://huggingface.co/Lenylvt/LanguageISO/resolve/main/iso.md"
|
12 |
df = pd.read_csv(url, delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all')
|
13 |
df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name']
|
14 |
df['ISO 639-1'] = df['ISO 639-1'].str.strip()
|
15 |
|
|
|
16 |
language_options = [(row['ISO 639-1'], f"{row['ISO 639-1']}") for index, row in df.iterrows()]
|
17 |
|
18 |
+
logging.basicConfig(level=logging.DEBUG)
|
19 |
+
|
20 |
+
# Fonction pour formater un texte en SRT
|
21 |
+
def text_to_srt(text):
|
22 |
+
lines = text.split('\n')
|
23 |
+
srt_content = ""
|
24 |
+
for i, line in enumerate(lines):
|
25 |
+
if line.strip() == "":
|
26 |
+
continue
|
27 |
+
try:
|
28 |
+
times, content = line.split(']', 1)
|
29 |
+
start, end = times[1:].split(' -> ')
|
30 |
+
if start.count(":") == 1:
|
31 |
+
start = "00:" + start
|
32 |
+
if end.count(":") == 1:
|
33 |
+
end = "00:" + end
|
34 |
+
srt_content += f"{i+1}\n{start.replace('.', ',')} --> {end.replace('.', ',')}\n{content.strip()}\n\n"
|
35 |
+
except ValueError:
|
36 |
+
continue
|
37 |
+
temp_file_path = '/tmp/output.srt'
|
38 |
+
with open(temp_file_path, 'w', encoding='utf-8') as file:
|
39 |
+
file.write(srt_content)
|
40 |
+
return temp_file_path
|
41 |
+
|
42 |
+
# Fonction pour formater des secondes en timestamp
|
43 |
+
def format_timestamp(seconds):
|
44 |
+
hours = int(seconds // 3600)
|
45 |
+
minutes = int((seconds % 3600) // 60)
|
46 |
+
seconds_remainder = seconds % 60
|
47 |
+
return f"{hours:02d}:{minutes:02d}:{seconds_remainder:06.3f}"
|
48 |
+
|
49 |
+
# Fonction de traduction de texte
|
50 |
+
def translate_text(text, source_language_code, target_language_code):
|
51 |
+
model_name = f"Helsinki-NLP/opus-mt-{source_language_code}-{target_language_code}"
|
52 |
+
if source_language_code == target_language_code:
|
53 |
+
return "Translation between the same languages is not supported."
|
54 |
+
try:
|
55 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
56 |
model = MarianMTModel.from_pretrained(model_name)
|
57 |
+
except Exception as e:
|
58 |
+
return f"Failed to load model for {source_language_code} to {target_language_code}: {str(e)}"
|
59 |
+
translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512))
|
60 |
+
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
61 |
+
return translated_text
|
62 |
|
63 |
+
# Fonction pour traduire un fichier SRT
|
64 |
+
def translate_srt(input_file_path, source_language_code, target_language_code, progress=None):
|
65 |
+
subs = pysrt.open(input_file_path)
|
66 |
+
translated_subs = []
|
67 |
+
for idx, sub in enumerate(subs):
|
68 |
+
translated_text = translate_text(sub.text, source_language_code, target_language_code)
|
69 |
+
translated_sub = pysrt.SubRipItem(index=idx+1, start=sub.start, end=sub.end, text=translated_text)
|
70 |
+
translated_subs.append(translated_sub)
|
71 |
+
if progress:
|
72 |
+
progress((idx + 1) / len(subs))
|
73 |
+
translated_srt_path = input_file_path.replace(".srt", f"_{target_language_code}.srt")
|
74 |
+
pysrt.SubRipFile(translated_subs).save(translated_srt_path)
|
75 |
+
return translated_srt_path
|
76 |
|
77 |
+
# Fonction pour transcrire l'audio d'une vidéo en texte
|
78 |
+
def transcribe(audio_file_path, model_size="base"):
|
79 |
+
device = "cpu"
|
80 |
+
compute_type = "int8"
|
81 |
+
model = WhisperModel(model_size=model_size, device=device, compute_type=compute_type)
|
82 |
+
segments, _ = model.transcribe(audio_file_path)
|
83 |
+
transcription_with_timestamps = [
|
84 |
+
f"[{format_timestamp(segment.start)} -> {format_timestamp(segment.end)}] {segment.text}"
|
85 |
+
for segment in segments
|
86 |
+
]
|
87 |
+
return "\n".join(transcription_with_timestamps)
|
88 |
+
|
89 |
+
# Fonction pour ajouter des sous-titres à une vidéo
|
90 |
+
def add_subtitle_to_video(input_video, subtitle_file, subtitle_language, soft_subtitle):
|
91 |
+
video_input_stream = ffmpeg.input(input_video)
|
92 |
+
subtitle_input_stream = ffmpeg.input(subtitle_file)
|
93 |
+
input_video_name = os.path.splitext(os.path.basename(input_video))[0]
|
94 |
+
output_video = f"/tmp/output-{input_video_name}.mp4"
|
95 |
+
subtitle_track_title = os.path.splitext(os.path.basename(subtitle_file))[0]
|
96 |
+
|
97 |
+
if soft_subtitle:
|
98 |
+
stream = ffmpeg.output(
|
99 |
+
video_input_stream, subtitle_input_stream, output_video,
|
100 |
+
**{"c": "copy", "c:s": "mov_text"},
|
101 |
+
**{"metadata:s:s:0": f"language={subtitle_language}", "metadata:s:s:0": f"title={subtitle_track_title}"}
|
102 |
+
)
|
103 |
+
else:
|
104 |
+
stream = ffmpeg.output(
|
105 |
+
video_input_stream, output_video,
|
106 |
+
vf=f"subtitles={subtitle_file}"
|
107 |
+
)
|
108 |
+
|
109 |
+
ffmpeg.run(stream, overwrite_output=True)
|
110 |
return output_video
|
111 |
|
112 |
+
# Définition des interfaces Gradio
|
113 |
+
def transcribe_and_translate_video(video_file, source_language_code, target_language_code):
|
114 |
+
transcription = transcribe(video_file.name, "tiny")
|
115 |
+
srt_path = text_to_srt(transcription)
|
116 |
+
translated_srt_path = translate_srt(srt_path, source_language_code, target_language_code)
|
117 |
+
output_video = add_subtitle_to_video(video_file.name, translated_srt_path, target_language_code, False)
|
118 |
+
return output_video, translated_srt_path
|
119 |
+
|
120 |
+
# Inputs et outputs Gradio
|
121 |
+
video_input = gr.inputs.Video(label="Video File")
|
122 |
+
source_language_dropdown = gr.inputs.Dropdown(choices=language_options, label="Source Language")
|
123 |
+
target_language_dropdown = gr.inputs.Dropdown(choices=language_options, label="Target Language")
|
|
|
|
|
|
|
124 |
|
125 |
+
transcribe_translate_interface = gr.Interface(
|
126 |
+
fn=transcribe_and_translate_video,
|
127 |
+
inputs=[video_input, source_language_dropdown, target_language_dropdown],
|
128 |
+
outputs=[gr.outputs.Video(label="Video with Translated Subtitles"), gr.outputs.File(label="Translated Subtitles (.srt)")],
|
129 |
+
title="Video Transcribe & Translate",
|
130 |
+
description="Transcribe and translate the subtitles of your video into another language."
|
131 |
+
)
|
132 |
|
133 |
+
# Lancement de l'application Gradio
|
134 |
+
transcribe_translate_interface.launch()
|