|
from __future__ import annotations |
|
from typing import TYPE_CHECKING, List |
|
|
|
import logging |
|
import json |
|
import commentjson as cjson |
|
import os |
|
import sys |
|
import requests |
|
import urllib3 |
|
import traceback |
|
import pathlib |
|
|
|
from tqdm import tqdm |
|
import colorama |
|
from duckduckgo_search import ddg |
|
import asyncio |
|
import aiohttp |
|
from enum import Enum |
|
|
|
from ..presets import * |
|
from ..llama_func import * |
|
from ..utils import * |
|
from .. import shared |
|
from ..config import retrieve_proxy |
|
|
|
|
|
class ModelType(Enum): |
|
Unknown = -1 |
|
OpenAI = 0 |
|
ChatGLM = 1 |
|
LLaMA = 2 |
|
XMChat = 3 |
|
StableLM = 4 |
|
MOSS = 5 |
|
YuanAI = 6 |
|
|
|
@classmethod |
|
def get_type(cls, model_name: str): |
|
model_type = None |
|
model_name_lower = model_name.lower() |
|
if "gpt" in model_name_lower: |
|
model_type = ModelType.OpenAI |
|
elif "chatglm" in model_name_lower: |
|
model_type = ModelType.ChatGLM |
|
elif "llama" in model_name_lower or "alpaca" in model_name_lower: |
|
model_type = ModelType.LLaMA |
|
elif "xmchat" in model_name_lower: |
|
model_type = ModelType.XMChat |
|
elif "stablelm" in model_name_lower: |
|
model_type = ModelType.StableLM |
|
elif "moss" in model_name_lower: |
|
model_type = ModelType.MOSS |
|
elif "yuanai" in model_name_lower: |
|
model_type = ModelType.YuanAI |
|
else: |
|
model_type = ModelType.Unknown |
|
return model_type |
|
|
|
|
|
class BaseLLMModel: |
|
def __init__( |
|
self, |
|
model_name, |
|
system_prompt="", |
|
temperature=1.0, |
|
top_p=1.0, |
|
n_choices=1, |
|
stop=None, |
|
max_generation_token=None, |
|
presence_penalty=0, |
|
frequency_penalty=0, |
|
logit_bias=None, |
|
user="", |
|
) -> None: |
|
self.history = [] |
|
self.all_token_counts = [] |
|
self.model_name = model_name |
|
self.model_type = ModelType.get_type(model_name) |
|
try: |
|
self.token_upper_limit = MODEL_TOKEN_LIMIT[model_name] |
|
except KeyError: |
|
self.token_upper_limit = DEFAULT_TOKEN_LIMIT |
|
self.interrupted = False |
|
self.system_prompt = system_prompt |
|
self.api_key = None |
|
self.need_api_key = False |
|
self.single_turn = False |
|
|
|
self.temperature = temperature |
|
self.top_p = top_p |
|
self.n_choices = n_choices |
|
self.stop_sequence = stop |
|
self.max_generation_token = None |
|
self.presence_penalty = presence_penalty |
|
self.frequency_penalty = frequency_penalty |
|
self.logit_bias = logit_bias |
|
self.user_identifier = user |
|
|
|
def get_answer_stream_iter(self): |
|
"""stream predict, need to be implemented |
|
conversations are stored in self.history, with the most recent question, in OpenAI format |
|
should return a generator, each time give the next word (str) in the answer |
|
""" |
|
logging.warning("stream predict not implemented, using at once predict instead") |
|
response, _ = self.get_answer_at_once() |
|
yield response |
|
|
|
def get_answer_at_once(self): |
|
"""predict at once, need to be implemented |
|
conversations are stored in self.history, with the most recent question, in OpenAI format |
|
Should return: |
|
the answer (str) |
|
total token count (int) |
|
""" |
|
logging.warning("at once predict not implemented, using stream predict instead") |
|
response_iter = self.get_answer_stream_iter() |
|
count = 0 |
|
for response in response_iter: |
|
count += 1 |
|
return response, sum(self.all_token_counts) + count |
|
|
|
def billing_info(self): |
|
"""get billing infomation, inplement if needed""" |
|
logging.warning("billing info not implemented, using default") |
|
return BILLING_NOT_APPLICABLE_MSG |
|
|
|
def count_token(self, user_input): |
|
"""get token count from input, implement if needed""" |
|
|
|
return len(user_input) |
|
|
|
def stream_next_chatbot(self, inputs, chatbot, fake_input=None, display_append=""): |
|
def get_return_value(): |
|
return chatbot, status_text |
|
|
|
status_text = i18n("开始实时传输回答……") |
|
if fake_input: |
|
chatbot.append((fake_input, "")) |
|
else: |
|
chatbot.append((inputs, "")) |
|
|
|
user_token_count = self.count_token(inputs) |
|
self.all_token_counts.append(user_token_count) |
|
logging.debug(f"输入token计数: {user_token_count}") |
|
|
|
stream_iter = self.get_answer_stream_iter() |
|
|
|
for partial_text in stream_iter: |
|
chatbot[-1] = (chatbot[-1][0], partial_text + display_append) |
|
self.all_token_counts[-1] += 1 |
|
status_text = self.token_message() |
|
yield get_return_value() |
|
if self.interrupted: |
|
self.recover() |
|
break |
|
self.history.append(construct_assistant(partial_text)) |
|
|
|
def next_chatbot_at_once(self, inputs, chatbot, fake_input=None, display_append=""): |
|
if fake_input: |
|
chatbot.append((fake_input, "")) |
|
else: |
|
chatbot.append((inputs, "")) |
|
if fake_input is not None: |
|
user_token_count = self.count_token(fake_input) |
|
else: |
|
user_token_count = self.count_token(inputs) |
|
self.all_token_counts.append(user_token_count) |
|
ai_reply, total_token_count = self.get_answer_at_once() |
|
self.history.append(construct_assistant(ai_reply)) |
|
if fake_input is not None: |
|
self.history[-2] = construct_user(fake_input) |
|
chatbot[-1] = (chatbot[-1][0], ai_reply + display_append) |
|
if fake_input is not None: |
|
self.all_token_counts[-1] += count_token(construct_assistant(ai_reply)) |
|
else: |
|
self.all_token_counts[-1] = total_token_count - sum(self.all_token_counts) |
|
status_text = self.token_message() |
|
return chatbot, status_text |
|
|
|
def handle_file_upload(self, files, chatbot): |
|
"""if the model accepts multi modal input, implement this function""" |
|
status = gr.Markdown.update() |
|
if files: |
|
construct_index(self.api_key, file_src=files) |
|
status = "索引构建完成" |
|
return gr.Files.update(), chatbot, status |
|
|
|
def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot): |
|
fake_inputs = None |
|
display_append = [] |
|
limited_context = False |
|
fake_inputs = real_inputs |
|
if files: |
|
from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery |
|
from llama_index.indices.query.schema import QueryBundle |
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings |
|
from langchain.chat_models import ChatOpenAI |
|
from llama_index import ( |
|
GPTSimpleVectorIndex, |
|
ServiceContext, |
|
LangchainEmbedding, |
|
OpenAIEmbedding, |
|
) |
|
limited_context = True |
|
msg = "加载索引中……" |
|
logging.info(msg) |
|
|
|
index = construct_index(self.api_key, file_src=files) |
|
assert index is not None, "获取索引失败" |
|
msg = "索引获取成功,生成回答中……" |
|
logging.info(msg) |
|
if local_embedding or self.model_type != ModelType.OpenAI: |
|
embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name = "sentence-transformers/distiluse-base-multilingual-cased-v2")) |
|
else: |
|
embed_model = OpenAIEmbedding() |
|
|
|
with retrieve_proxy(): |
|
prompt_helper = PromptHelper( |
|
max_input_size=4096, |
|
num_output=5, |
|
max_chunk_overlap=20, |
|
chunk_size_limit=600, |
|
) |
|
from llama_index import ServiceContext |
|
|
|
service_context = ServiceContext.from_defaults( |
|
prompt_helper=prompt_helper, embed_model=embed_model |
|
) |
|
query_object = GPTVectorStoreIndexQuery( |
|
index.index_struct, |
|
service_context=service_context, |
|
similarity_top_k=5, |
|
vector_store=index._vector_store, |
|
docstore=index._docstore, |
|
response_synthesizer=None |
|
) |
|
query_bundle = QueryBundle(real_inputs) |
|
nodes = query_object.retrieve(query_bundle) |
|
reference_results = [n.node.text for n in nodes] |
|
reference_results = add_source_numbers(reference_results, use_source=False) |
|
display_append = add_details(reference_results) |
|
display_append = "\n\n" + "".join(display_append) |
|
real_inputs = ( |
|
replace_today(PROMPT_TEMPLATE) |
|
.replace("{query_str}", real_inputs) |
|
.replace("{context_str}", "\n\n".join(reference_results)) |
|
.replace("{reply_language}", reply_language) |
|
) |
|
elif use_websearch: |
|
limited_context = True |
|
search_results = ddg(real_inputs, max_results=5) |
|
reference_results = [] |
|
for idx, result in enumerate(search_results): |
|
logging.debug(f"搜索结果{idx + 1}:{result}") |
|
domain_name = urllib3.util.parse_url(result["href"]).host |
|
reference_results.append([result["body"], result["href"]]) |
|
display_append.append( |
|
|
|
f"<li><a href=\"{result['href']}\" target=\"_blank\">{domain_name}</a></li>\n" |
|
) |
|
reference_results = add_source_numbers(reference_results) |
|
display_append = "<ol>\n\n" + "".join(display_append) + "</ol>" |
|
real_inputs = ( |
|
replace_today(WEBSEARCH_PTOMPT_TEMPLATE) |
|
.replace("{query}", real_inputs) |
|
.replace("{web_results}", "\n\n".join(reference_results)) |
|
.replace("{reply_language}", reply_language) |
|
) |
|
else: |
|
display_append = "" |
|
return limited_context, fake_inputs, display_append, real_inputs, chatbot |
|
|
|
def predict( |
|
self, |
|
inputs, |
|
chatbot, |
|
stream=False, |
|
use_websearch=False, |
|
files=None, |
|
reply_language="中文", |
|
should_check_token_count=True, |
|
): |
|
|
|
status_text = "开始生成回答……" |
|
logging.info( |
|
"输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL |
|
) |
|
if should_check_token_count: |
|
yield chatbot + [(inputs, "")], status_text |
|
if reply_language == "跟随问题语言(不稳定)": |
|
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch." |
|
|
|
limited_context, fake_inputs, display_append, inputs, chatbot = self.prepare_inputs(real_inputs=inputs, use_websearch=use_websearch, files=files, reply_language=reply_language, chatbot=chatbot) |
|
yield chatbot + [(fake_inputs, "")], status_text |
|
|
|
if ( |
|
self.need_api_key and |
|
self.api_key is None |
|
and not shared.state.multi_api_key |
|
): |
|
status_text = STANDARD_ERROR_MSG + NO_APIKEY_MSG |
|
logging.info(status_text) |
|
chatbot.append((inputs, "")) |
|
if len(self.history) == 0: |
|
self.history.append(construct_user(inputs)) |
|
self.history.append("") |
|
self.all_token_counts.append(0) |
|
else: |
|
self.history[-2] = construct_user(inputs) |
|
yield chatbot + [(inputs, "")], status_text |
|
return |
|
elif len(inputs.strip()) == 0: |
|
status_text = STANDARD_ERROR_MSG + NO_INPUT_MSG |
|
logging.info(status_text) |
|
yield chatbot + [(inputs, "")], status_text |
|
return |
|
|
|
if self.single_turn: |
|
self.history = [] |
|
self.all_token_counts = [] |
|
self.history.append(construct_user(inputs)) |
|
|
|
try: |
|
if stream: |
|
logging.debug("使用流式传输") |
|
iter = self.stream_next_chatbot( |
|
inputs, |
|
chatbot, |
|
fake_input=fake_inputs, |
|
display_append=display_append, |
|
) |
|
for chatbot, status_text in iter: |
|
yield chatbot, status_text |
|
else: |
|
logging.debug("不使用流式传输") |
|
chatbot, status_text = self.next_chatbot_at_once( |
|
inputs, |
|
chatbot, |
|
fake_input=fake_inputs, |
|
display_append=display_append, |
|
) |
|
yield chatbot, status_text |
|
except Exception as e: |
|
traceback.print_exc() |
|
status_text = STANDARD_ERROR_MSG + str(e) |
|
yield chatbot, status_text |
|
|
|
if len(self.history) > 1 and self.history[-1]["content"] != inputs: |
|
logging.info( |
|
"回答为:" |
|
+ colorama.Fore.BLUE |
|
+ f"{self.history[-1]['content']}" |
|
+ colorama.Style.RESET_ALL |
|
) |
|
|
|
if limited_context: |
|
|
|
|
|
self.history = [] |
|
self.all_token_counts = [] |
|
|
|
max_token = self.token_upper_limit - TOKEN_OFFSET |
|
|
|
if sum(self.all_token_counts) > max_token and should_check_token_count: |
|
count = 0 |
|
while ( |
|
sum(self.all_token_counts) |
|
> self.token_upper_limit * REDUCE_TOKEN_FACTOR |
|
and sum(self.all_token_counts) > 0 |
|
): |
|
count += 1 |
|
del self.all_token_counts[0] |
|
del self.history[:2] |
|
logging.info(status_text) |
|
status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话" |
|
yield chatbot, status_text |
|
|
|
self.auto_save(chatbot) |
|
|
|
def retry( |
|
self, |
|
chatbot, |
|
stream=False, |
|
use_websearch=False, |
|
files=None, |
|
reply_language="中文", |
|
): |
|
logging.debug("重试中……") |
|
if len(self.history) > 0: |
|
inputs = self.history[-2]["content"] |
|
del self.history[-2:] |
|
self.all_token_counts.pop() |
|
elif len(chatbot) > 0: |
|
inputs = chatbot[-1][0] |
|
else: |
|
yield chatbot, f"{STANDARD_ERROR_MSG}上下文是空的" |
|
return |
|
|
|
iter = self.predict( |
|
inputs, |
|
chatbot, |
|
stream=stream, |
|
use_websearch=use_websearch, |
|
files=files, |
|
reply_language=reply_language, |
|
) |
|
for x in iter: |
|
yield x |
|
logging.debug("重试完毕") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def interrupt(self): |
|
self.interrupted = True |
|
|
|
def recover(self): |
|
self.interrupted = False |
|
|
|
def set_token_upper_limit(self, new_upper_limit): |
|
self.token_upper_limit = new_upper_limit |
|
print(f"token上限设置为{new_upper_limit}") |
|
|
|
def set_temperature(self, new_temperature): |
|
self.temperature = new_temperature |
|
|
|
def set_top_p(self, new_top_p): |
|
self.top_p = new_top_p |
|
|
|
def set_n_choices(self, new_n_choices): |
|
self.n_choices = new_n_choices |
|
|
|
def set_stop_sequence(self, new_stop_sequence: str): |
|
new_stop_sequence = new_stop_sequence.split(",") |
|
self.stop_sequence = new_stop_sequence |
|
|
|
def set_max_tokens(self, new_max_tokens): |
|
self.max_generation_token = new_max_tokens |
|
|
|
def set_presence_penalty(self, new_presence_penalty): |
|
self.presence_penalty = new_presence_penalty |
|
|
|
def set_frequency_penalty(self, new_frequency_penalty): |
|
self.frequency_penalty = new_frequency_penalty |
|
|
|
def set_logit_bias(self, logit_bias): |
|
logit_bias = logit_bias.split() |
|
bias_map = {} |
|
encoding = tiktoken.get_encoding("cl100k_base") |
|
for line in logit_bias: |
|
word, bias_amount = line.split(":") |
|
if word: |
|
for token in encoding.encode(word): |
|
bias_map[token] = float(bias_amount) |
|
self.logit_bias = bias_map |
|
|
|
def set_user_identifier(self, new_user_identifier): |
|
self.user_identifier = new_user_identifier |
|
|
|
def set_system_prompt(self, new_system_prompt): |
|
self.system_prompt = new_system_prompt |
|
|
|
def set_key(self, new_access_key): |
|
self.api_key = new_access_key.strip() |
|
msg = i18n("API密钥更改为了") + hide_middle_chars(self.api_key) |
|
logging.info(msg) |
|
return self.api_key, msg |
|
|
|
def set_single_turn(self, new_single_turn): |
|
self.single_turn = new_single_turn |
|
|
|
def reset(self): |
|
self.history = [] |
|
self.all_token_counts = [] |
|
self.interrupted = False |
|
pathlib.Path(os.path.join(HISTORY_DIR, self.user_identifier, new_auto_history_filename(os.path.join(HISTORY_DIR, self.user_identifier)))).touch() |
|
return [], self.token_message([0]) |
|
|
|
def delete_first_conversation(self): |
|
if self.history: |
|
del self.history[:2] |
|
del self.all_token_counts[0] |
|
return self.token_message() |
|
|
|
def delete_last_conversation(self, chatbot): |
|
if len(chatbot) > 0 and STANDARD_ERROR_MSG in chatbot[-1][1]: |
|
msg = "由于包含报错信息,只删除chatbot记录" |
|
chatbot.pop() |
|
return chatbot, self.history |
|
if len(self.history) > 0: |
|
self.history.pop() |
|
self.history.pop() |
|
if len(chatbot) > 0: |
|
msg = "删除了一组chatbot对话" |
|
chatbot.pop() |
|
if len(self.all_token_counts) > 0: |
|
msg = "删除了一组对话的token计数记录" |
|
self.all_token_counts.pop() |
|
msg = "删除了一组对话" |
|
return chatbot, msg |
|
|
|
def token_message(self, token_lst=None): |
|
if token_lst is None: |
|
token_lst = self.all_token_counts |
|
token_sum = 0 |
|
for i in range(len(token_lst)): |
|
token_sum += sum(token_lst[: i + 1]) |
|
return i18n("Token 计数: ") + f"{sum(token_lst)}" + i18n(",本次对话累计消耗了 ") + f"{token_sum} tokens" |
|
|
|
def save_chat_history(self, filename, chatbot, user_name): |
|
if filename == "": |
|
return |
|
if not filename.endswith(".json"): |
|
filename += ".json" |
|
return save_file(filename, self.system_prompt, self.history, chatbot, user_name) |
|
|
|
def auto_save(self, chatbot): |
|
history_file_path = get_history_filepath(self.user_identifier) |
|
save_file(history_file_path, self.system_prompt, self.history, chatbot, self.user_identifier) |
|
|
|
def export_markdown(self, filename, chatbot, user_name): |
|
if filename == "": |
|
return |
|
if not filename.endswith(".md"): |
|
filename += ".md" |
|
return save_file(filename, self.system_prompt, self.history, chatbot, user_name) |
|
|
|
def load_chat_history(self, filename, user_name): |
|
logging.debug(f"{user_name} 加载对话历史中……") |
|
logging.info(f"filename: {filename}") |
|
if type(filename) != str and filename is not None: |
|
filename = filename.name |
|
try: |
|
if "/" not in filename: |
|
history_file_path = os.path.join(HISTORY_DIR, user_name, filename) |
|
else: |
|
history_file_path = filename |
|
with open(history_file_path, "r") as f: |
|
json_s = json.load(f) |
|
try: |
|
if type(json_s["history"][0]) == str: |
|
logging.info("历史记录格式为旧版,正在转换……") |
|
new_history = [] |
|
for index, item in enumerate(json_s["history"]): |
|
if index % 2 == 0: |
|
new_history.append(construct_user(item)) |
|
else: |
|
new_history.append(construct_assistant(item)) |
|
json_s["history"] = new_history |
|
logging.info(new_history) |
|
except: |
|
pass |
|
logging.debug(f"{user_name} 加载对话历史完毕") |
|
self.history = json_s["history"] |
|
return os.path.basename(filename), json_s["system"], json_s["chatbot"] |
|
except: |
|
|
|
logging.info(f"没有找到对话历史记录 {filename}") |
|
return gr.update(), self.system_prompt, gr.update() |
|
|
|
def auto_load(self): |
|
if self.user_identifier == "": |
|
self.reset() |
|
return self.system_prompt, gr.update() |
|
history_file_path = get_history_filepath(self.user_identifier) |
|
filename, system_prompt, chatbot = self.load_chat_history(history_file_path, self.user_identifier) |
|
return system_prompt, chatbot |
|
|
|
|
|
def like(self): |
|
"""like the last response, implement if needed |
|
""" |
|
return gr.update() |
|
|
|
def dislike(self): |
|
"""dislike the last response, implement if needed |
|
""" |
|
return gr.update() |
|
|