|
import os |
|
import logging |
|
|
|
import hashlib |
|
import PyPDF2 |
|
from tqdm import tqdm |
|
|
|
from modules.presets import * |
|
from modules.utils import * |
|
from modules.config import local_embedding |
|
|
|
|
|
def get_documents(file_src): |
|
from langchain.schema import Document |
|
from langchain.text_splitter import TokenTextSplitter |
|
text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30) |
|
|
|
documents = [] |
|
logging.debug("Loading documents...") |
|
logging.debug(f"file_src: {file_src}") |
|
for file in file_src: |
|
filepath = file.name |
|
filename = os.path.basename(filepath) |
|
file_type = os.path.splitext(filename)[1] |
|
logging.info(f"loading file: {filename}") |
|
texts = None |
|
try: |
|
if file_type == ".pdf": |
|
logging.debug("Loading PDF...") |
|
try: |
|
from modules.pdf_func import parse_pdf |
|
from modules.config import advance_docs |
|
|
|
two_column = advance_docs["pdf"].get("two_column", False) |
|
pdftext = parse_pdf(filepath, two_column).text |
|
except: |
|
pdftext = "" |
|
with open(filepath, "rb") as pdfFileObj: |
|
pdfReader = PyPDF2.PdfReader(pdfFileObj) |
|
for page in tqdm(pdfReader.pages): |
|
pdftext += page.extract_text() |
|
texts = [Document(page_content=pdftext, |
|
metadata={"source": filepath})] |
|
elif file_type == ".docx": |
|
logging.debug("Loading Word...") |
|
from langchain.document_loaders import UnstructuredWordDocumentLoader |
|
loader = UnstructuredWordDocumentLoader(filepath) |
|
texts = loader.load() |
|
elif file_type == ".pptx": |
|
logging.debug("Loading PowerPoint...") |
|
from langchain.document_loaders import UnstructuredPowerPointLoader |
|
loader = UnstructuredPowerPointLoader(filepath) |
|
texts = loader.load() |
|
elif file_type == ".epub": |
|
logging.debug("Loading EPUB...") |
|
from langchain.document_loaders import UnstructuredEPubLoader |
|
loader = UnstructuredEPubLoader(filepath) |
|
texts = loader.load() |
|
elif file_type == ".xlsx": |
|
logging.debug("Loading Excel...") |
|
text_list = excel_to_string(filepath) |
|
texts = [] |
|
for elem in text_list: |
|
texts.append(Document(page_content=elem, |
|
metadata={"source": filepath})) |
|
else: |
|
logging.debug("Loading text file...") |
|
from langchain.document_loaders import TextLoader |
|
loader = TextLoader(filepath, "utf8") |
|
texts = loader.load() |
|
except Exception as e: |
|
import traceback |
|
logging.error(f"Error loading file: {filename}") |
|
traceback.print_exc() |
|
|
|
if texts is not None: |
|
texts = text_splitter.split_documents(texts) |
|
documents.extend(texts) |
|
logging.debug("Documents loaded.") |
|
return documents |
|
|
|
|
|
def construct_index( |
|
api_key, |
|
file_src, |
|
max_input_size=4096, |
|
num_outputs=5, |
|
max_chunk_overlap=20, |
|
chunk_size_limit=600, |
|
embedding_limit=None, |
|
separator=" ", |
|
load_from_cache_if_possible=True, |
|
): |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.vectorstores import FAISS |
|
|
|
if api_key: |
|
os.environ["OPENAI_API_KEY"] = api_key |
|
else: |
|
|
|
os.environ["OPENAI_API_KEY"] = "sk-xxxxxxx" |
|
chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit |
|
embedding_limit = None if embedding_limit == 0 else embedding_limit |
|
separator = " " if separator == "" else separator |
|
|
|
index_name = get_file_hash(file_src) |
|
index_path = f"./index/{index_name}" |
|
if local_embedding: |
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings |
|
embeddings = HuggingFaceEmbeddings( |
|
model_name="sentence-transformers/distiluse-base-multilingual-cased-v2") |
|
else: |
|
from langchain.embeddings import OpenAIEmbeddings |
|
if os.environ.get("OPENAI_API_TYPE", "openai") == "openai": |
|
embeddings = OpenAIEmbeddings(openai_api_base=os.environ.get( |
|
"OPENAI_API_BASE", None), openai_api_key=os.environ.get("OPENAI_EMBEDDING_API_KEY", api_key)) |
|
else: |
|
embeddings = OpenAIEmbeddings(deployment=os.environ["AZURE_EMBEDDING_DEPLOYMENT_NAME"], openai_api_key=os.environ["AZURE_OPENAI_API_KEY"], |
|
model=os.environ["AZURE_EMBEDDING_MODEL_NAME"], openai_api_base=os.environ["AZURE_OPENAI_API_BASE_URL"], openai_api_type="azure") |
|
if os.path.exists(index_path) and load_from_cache_if_possible: |
|
logging.info("找到了缓存的索引文件,加载中……") |
|
return FAISS.load_local(index_path, embeddings) |
|
else: |
|
try: |
|
documents = get_documents(file_src) |
|
logging.info("构建索引中……") |
|
with retrieve_proxy(): |
|
index = FAISS.from_documents(documents, embeddings) |
|
logging.debug("索引构建完成!") |
|
os.makedirs("./index", exist_ok=True) |
|
index.save_local(index_path) |
|
logging.debug("索引已保存至本地!") |
|
return index |
|
|
|
except Exception as e: |
|
import traceback |
|
logging.error("索引构建失败!%s", e) |
|
traceback.print_exc() |
|
return None |
|
|