File size: 50,789 Bytes
fa0a93c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 |
'''
from https://github.com/amirveyseh/MadDog under CC BY-NC-SA 4.0
'''
import string
if __name__ != "__main__":
import spacy
nlp = spacy.load("en_core_web_sm")
with open('stopWords.txt') as file:
stop_words = [l.strip() for l in file.readlines()]
class Extractor:
def __init__(self):
pass
def short_extract(self, sentence, threshold, starting_lower_case, ignore_dot=False):
shorts = []
for i, t in enumerate(sentence):
if ignore_dot:
t = t.replace('.', '')
# t = t.replace('-','')
if len(t) == 0:
continue
# FIXED [issue: of an enhanced Node B ( eNB ) ]
if not starting_lower_case:
if t[0].isupper() and len([c for c in t if c.isupper()]) / len(t) > threshold and 2 <= len(t) <= 10:
shorts.append(i)
else:
if len([c for c in t if c.isupper()]) / len(t) > threshold and 2 <= len(t) <= 10:
shorts.append(i)
return shorts
def extract_cand_long(self, sentence, token, ind, ignore_punc=False, add_punc=False, small_window=False):
'''
extract candidate long form of the form "long form (short form)" or "short form (long form)"
:param sentence: tokenized sentence
:param token: acronym
:param ind: position of the acronym
:return: candidate long form, candidate is on left or right of the short form
'''
if not small_window:
long_cand_length = min([len(token) + 10, len(token) * 3])
else:
long_cand_length = min([len(token) + 5, len(token) * 2])
cand_long = []
cand_long_index = []
left = True
right_ind = 1
left_ind = 1
# FIXED [issue: ]
if add_punc:
excluded_puncs = ['=', ':']
else:
excluded_puncs = []
# FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
if ignore_punc:
while ind + right_ind < len(sentence) and sentence[ind + right_ind] in [p for p in string.punctuation if
p != '(' and p != ')' and p not in excluded_puncs]:
right_ind += 1
while ind - left_ind > 0 and sentence[ind - left_ind] in [p for p in string.punctuation if
p != '(' and p != ')' and p not in excluded_puncs]:
left_ind -= 1
####
if ind < len(sentence) - 2 - right_ind and (
sentence[ind + right_ind] == '(' or sentence[ind + right_ind] == '=' or sentence[
ind + right_ind] in excluded_puncs):
left = False
for j in range(ind + right_ind + 1, min([ind + right_ind + 1 + long_cand_length, len(sentence)])):
if sentence[j] != ')':
cand_long.append(sentence[j])
cand_long_index.append(j)
else:
break
elif 1 < ind - (left_ind - 1) and ind + right_ind < len(sentence) and (
(sentence[ind - left_ind] == '(' and sentence[ind + right_ind] == ')') or sentence[
ind - left_ind] in excluded_puncs):
for k in range(0, long_cand_length):
j = ind - left_ind - 1 - k
if j > -1:
cand_long.insert(0, sentence[j])
cand_long_index.insert(0, j)
return cand_long, cand_long_index, left
# FIXED [issue: The Stopping Trained in America PhDs from Leaving the Economy Act ( or STAPLE Act ) has bee introduced]
def extract_high_recall_cand_long(self, sentence, token, ind, small_window=False, left=False):
'''
Find the candidate long form for a give acronym for high recall extraction
example: The Stopping Trained in America PhDs from Leaving the Economy Act ( or STAPLE Act ) has bee introduced
:param sentence:
:param token:
:param ind:
:param small_window:
:return:
'''
long_cand_length = min([len(token) + 10, len(token) * 3])
cand_long = []
cand_long_index = []
if not left:
for j in range(ind + 1, min([ind + long_cand_length, len(sentence)])):
cand_long.append(sentence[j])
cand_long_index.append(j)
else:
for k in range(0, long_cand_length):
j = ind - 1 - k
if j > -1:
cand_long.insert(0, sentence[j])
cand_long_index.insert(0, j)
return cand_long, cand_long_index, left
def create_diction(self, sentence, labels, all_acronyms=True, tag='', map_chars=False, diction={}):
'''
convert sequential labels into {short-form: long-form} dictionary
:param sentence: tokenized sentence
:param labels: labels of form B-short, B-long, I-short, I-long, O
:return: dictionary
'''
shorts = []
longs = []
isShort = True
phr = []
for i in range(len(sentence)):
if labels[i] == 'O' or (isShort and 'long' in labels[i]) or (not isShort and 'short' in labels[i]) or (
labels[i].startswith('B')):
if len(phr):
if isShort:
shorts.append((phr[0], phr[-1]))
else:
longs.append((phr[0], phr[-1]))
phr = []
if 'short' in labels[i]:
isShort = True
phr.append(i)
if 'long' in labels[i]:
isShort = False
phr.append(i)
if len(phr):
if isShort:
shorts.append((phr[0], phr[-1]))
else:
longs.append((phr[0], phr[-1]))
acr_long = {}
for long in longs:
best_short = []
## check if the long form is already mapped in given diction
if long in diction and diction[long] in shorts:
best_short = diction[long]
best_dist = float('inf')
#### FIXED [issue: long form incorrectly mapped to the closest acronym in the sentence]
#### FIXED [issue: multiple short forms could be character matched with the long form]
if not best_short:
best_short_cands = []
for short in shorts:
long_form = self.character_match(sentence[short[0]], sentence[long[0]:long[1] + 1],
list(range(long[1] + 1 - long[0])), output_string=True,
is_candidate=False)
if long_form:
best_short_cands.append(short)
if len(best_short_cands) == 1:
best_short = best_short_cands[0]
#####
#### FIXED [QALD-6 (the workshop of question answering over linked-data 6) at ESWIC 2016]
if not best_short and map_chars:
best_short_cands = []
for short in shorts:
long_form = self.map_chars(sentence[short[0]], sentence[long[0]:long[1] + 1])
if long_form:
best_short_cands.append(short)
if len(best_short_cands) == 1:
best_short = best_short_cands[0]
####
#### FIXED [issue: US Securities and Exchange Commission EDGAR ( SEC ) database]
if not best_short:
best_short_cands = []
for short in shorts:
is_mapped = self.map_chars_with_capitals(sentence[short[0]], sentence[long[0]:long[1] + 1])
if is_mapped:
best_short_cands.append(short)
if len(best_short_cands) == 1:
best_short = best_short_cands[0]
####
# FIXED [issue: RNNs , Long Short - Term Memory ( LSTM ) architecture]
if not best_short and long[1] < len(sentence) - 2 and sentence[long[1] + 1] == '(' and 'short' in labels[
long[1] + 2]:
for short in shorts:
if short[0] == long[1] + 2:
best_short = short
break
if not best_short and long[0] > 1 and sentence[long[0] - 1] == '(' and 'short' in labels[long[0] - 2]:
for short in shorts:
if short[1] == long[0] - 2:
best_short = short
break
####
if not best_short:
for short in shorts:
if short[0] > long[1]:
dist = short[0] - long[1]
else:
dist = long[0] - short[1]
if dist < best_dist:
best_dist = dist
best_short = short
if best_short:
short_form_info = ' '.join(sentence[best_short[0]:best_short[1] + 1])
long_form_info = [' '.join(sentence[long[0]:long[1] + 1]), best_short, [long[0], long[1]], tag, 1]
if short_form_info in acr_long:
long_form_info[4] += 1
acr_long[short_form_info] = long_form_info
if all_acronyms:
for short in shorts:
acr = ' '.join(sentence[short[0]:short[1] + 1])
if acr not in acr_long:
acr_long[acr] = ['', short, [], tag, 1]
return acr_long
#### FIXED [QALD-6 (the workshop of question answering over linked-data 6) at ESWIC 2016]
def map_chars(self, acronym, long):
'''
This function evaluate the long for based on number of initials overlapping with the acronym and if it is above a threshold it assigns the long form the the acronym
:param acronym:
:param long:
:return:
'''
capitals = []
for c in acronym:
if c.isupper():
capitals.append(c.lower())
initials = [w[0].lower() for w in long]
ratio = len([c for c in initials if c in capitals]) / len(initials)
if ratio >= 0.6:
return long
else:
return None
#### FIXED [issue: US Securities and Exchange Commission EDGAR ( SEC ) database]
def map_chars_with_capitals(self, acronym, long):
'''
This function maps the acronym to the long-form which has the same initial capitals as the acronym
:param acronym:
:param long:
:return:
'''
capitals = []
for c in acronym:
if c.isupper():
capitals.append(c.lower())
long_capital_initials = []
for w in long:
if w[0].isupper():
long_capital_initials.append(w[0].lower())
if len(capitals) == len(long_capital_initials) and all(
capitals[i] == long_capital_initials[i] for i in range(len(capitals))):
return True
else:
return False
def schwartz_extract(self, sentence, shorts, remove_parentheses, ignore_hyphen=False, ignore_punc=False,
add_punc=False, small_window=False, no_stop_words=False, ignore_righthand=False,
map_chars=False,default_diction=False):
labels = ['O'] * len(sentence)
diction = {}
for i, t in enumerate(sentence):
if i in shorts:
labels[i] = 'B-short'
# FIXED [issue: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of ]
if ignore_hyphen:
t = t.replace('-', '')
# FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
cand_long, cand_long_index, left = self.extract_cand_long(sentence, t, i, ignore_punc=ignore_punc,
add_punc=add_punc, small_window=small_window)
cand_long = ' '.join(cand_long)
long_form = ""
## findBestLongForm
if len(cand_long) > 0:
if left:
sIndex = len(t) - 1
lIndex = len(cand_long) - 1
while sIndex >= 0:
curChar = t[sIndex].lower()
if curChar.isdigit() or curChar.isalpha():
while (lIndex >= 0 and cand_long[lIndex].lower() != curChar) or (
sIndex == 0 and lIndex > 0 and (
cand_long[lIndex - 1].isdigit() or cand_long[lIndex - 1].isalpha())):
lIndex -= 1
if lIndex < 0:
break
lIndex -= 1
sIndex -= 1
if lIndex >= -1:
try:
lIndex = cand_long.rindex(" ", 0, lIndex + 1) + 1
except:
lIndex = 0
if cand_long:
cand_long = cand_long[lIndex:]
long_form = cand_long
else:
sIndex = 0
lIndex = 0
if t[0].lower() == cand_long[0].lower() or ignore_righthand:
while sIndex < len(t):
curChar = t[sIndex].lower()
if curChar.isdigit() or curChar.isalpha():
while (lIndex < len(cand_long) and cand_long[lIndex].lower() != curChar) or (
ignore_righthand and (sIndex == 0 and lIndex > 0 and (
cand_long[lIndex - 1].isdigit() or cand_long[lIndex - 1].isalpha()))) or (
lIndex != 0 and cand_long[lIndex - 1] != ' ' and ' ' in cand_long[
lIndex:] and
cand_long[cand_long[lIndex:].index(' ') + lIndex + 1].lower() == curChar):
lIndex += 1
if lIndex >= len(cand_long):
break
if lIndex >= len(cand_long):
break
lIndex += 1
sIndex += 1
if lIndex < len(cand_long):
try:
lIndex = cand_long[lIndex:].index(" ") + lIndex + 1
except:
lIndex = len(cand_long)
if cand_long:
cand_long = cand_long[:lIndex]
long_form = cand_long
# FIXED [issue : 'good results on the product review ( CR ) and on the question - type ( TREC ) tasks']
if remove_parentheses:
if '(' in long_form or ')' in long_form:
long_form = ''
# FIXED [issue: TN: The Number of ]
long_form = long_form.split()
if no_stop_words and long_form:
if long_form[0].lower() in stop_words:
long_form = []
if long_form:
if left:
long_form_index = cand_long_index[-len(long_form):]
else:
long_form_index = cand_long_index[:len(long_form)]
first = True
for j in range(len(sentence)):
if j in long_form_index:
if first:
labels[j] = 'B-long'
first = False
else:
labels[j] = 'I-long'
if default_diction:
diction[(long_form_index[0], long_form_index[-1])] = (i, i)
return self.create_diction(sentence, labels, tag='Schwartz', map_chars=map_chars, diction=diction)
def bounded_schwartz_extract(self, sentence, shorts, remove_parentheses, ignore_hyphen=False, ignore_punc=False,
add_punc=False, small_window=False, no_stop_words=False, ignore_righthand=False,
map_chars=False, high_recall=False, high_recall_left=False, tag='Bounded Schwartz',default_diction=False):
'''
This function uses the same rule as schwartz but for the format "long form (short form)" will select long forms that the last word in the long form is selected to form the acronym
example: User - guided Social Media Crawling method ( USMC ) that
:param remove_parentheses:
:param sentence:
:param shorts:
:return:
'''
labels = ['O'] * len(sentence)
diction = {}
for i, t in enumerate(sentence):
if i in shorts:
labels[i] = 'B-short'
# FIXED [issue: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of ]
if ignore_hyphen:
t = t.replace('-', '')
# FIXED [issue: The Stopping Trained in America PhDs from Leaving the Economy Act ( or STAPLE Act ) has bee introduced]
if high_recall:
cand_long, cand_long_index, left = self.extract_high_recall_cand_long(sentence, t, i,
small_window=small_window,
left=high_recall_left)
else:
# FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
cand_long, cand_long_index, left = self.extract_cand_long(sentence, t, i, ignore_punc=ignore_punc,
add_punc=add_punc,
small_window=small_window)
cand_long = ' '.join(cand_long)
long_form = ""
## findBestLongForm
if len(cand_long) > 0:
if left:
sIndex = len(t) - 1
lIndex = len(cand_long) - 1
first_ind = len(cand_long)
while sIndex >= 0:
curChar = t[sIndex].lower()
if curChar.isdigit() or curChar.isalpha():
while (lIndex >= 0 and cand_long[lIndex].lower() != curChar) or (
sIndex == 0 and lIndex > 0 and (
cand_long[lIndex - 1].isdigit() or cand_long[lIndex - 1].isalpha())):
lIndex -= 1
if first_ind == len(cand_long):
first_ind = lIndex
if lIndex < 0:
break
lIndex -= 1
sIndex -= 1
if lIndex >= 0 or lIndex == -1 and cand_long[0].lower() == t[0].lower():
try:
lIndex = cand_long.rindex(" ", 0, lIndex + 1) + 1
try:
rIndex = cand_long[first_ind:].index(" ") + first_ind
except:
rIndex = len(cand_long)
except:
lIndex = 0
try:
rIndex = cand_long[first_ind:].index(" ") + first_ind
except:
rIndex = len(cand_long)
if cand_long:
index_map = {}
word_ind = 0
for ind, c in enumerate(cand_long):
if c == ' ':
word_ind += 1
index_map[ind] = word_ind
last_word_index = index_map[rIndex - 1]
cand_long = cand_long[lIndex:rIndex]
long_form = cand_long
else:
sIndex = 0
lIndex = 0
first_ind = -1
if t[0].lower() == cand_long[0].lower() or ignore_righthand:
while sIndex < len(t):
curChar = t[sIndex].lower()
if curChar.isdigit() or curChar.isalpha():
while (lIndex < len(cand_long) and cand_long[lIndex].lower() != curChar) or (
ignore_righthand and (sIndex == 0 and lIndex > 0 and (
cand_long[lIndex - 1].isdigit() or cand_long[lIndex - 1].isalpha()))) or (
lIndex != 0 and cand_long[lIndex - 1] != ' ' and ' ' in cand_long[
lIndex:] and
cand_long[cand_long[lIndex:].index(' ') + lIndex + 1].lower() == curChar):
lIndex += 1
if lIndex >= len(cand_long):
break
if first_ind == -1:
first_ind = lIndex
if lIndex >= len(cand_long):
break
lIndex += 1
sIndex += 1
if lIndex < len(cand_long) or (
first_ind < len(cand_long) and lIndex == len(cand_long) and cand_long[-1] == t[-1]):
try:
lIndex = cand_long[lIndex:].index(" ") + lIndex + 1
except:
lIndex = len(cand_long)
if cand_long:
if not ignore_righthand:
first_ind = 0
index_map = {}
word_ind = 0
for ind, c in enumerate(cand_long):
if c == ' ':
word_ind += 1
index_map[ind] = word_ind
first_word_index = index_map[first_ind]
cand_long = cand_long[first_ind:lIndex]
long_form = cand_long
# FIXED [issue : 'good results on the product review ( CR ) and on the question - type ( TREC ) tasks']
if remove_parentheses:
if '(' in long_form or ')' in long_form:
long_form = ''
# FIXED [issue: TN: The Number of ]
long_form = long_form.split()
if no_stop_words and long_form:
if long_form[0].lower() in stop_words:
long_form = []
if long_form:
if left:
long_form_index = cand_long_index[last_word_index - len(long_form) + 1:last_word_index + 1]
else:
long_form_index = cand_long_index[first_word_index:first_word_index + len(long_form)]
first = True
for j in range(len(sentence)):
if j in long_form_index:
if first:
labels[j] = 'B-long'
first = False
else:
labels[j] = 'I-long'
if default_diction:
diction[(long_form_index[0],long_form_index[-1])] = (i,i)
return self.create_diction(sentence, labels, tag=tag, map_chars=map_chars,diction=diction)
# FIXED [issue: The Stopping Trained in America PhDs from Leaving the Economy Act ( or STAPLE Act ) has bee introduced]
def high_recall_schwartz(self, sentence, shorts, remove_parentheses, ignore_hyphen=False, ignore_punc=False,
add_punc=False, small_window=False, no_stop_words=False, ignore_righthand=False,
map_chars=False):
'''
This function use bounded schwartz rules for acronyms which are not necessarily in parentheses
example: The Stopping Trained in America PhDs from Leaving the Economy Act ( or STAPLE Act ) has bee introduced
:param sentence:
:param shorts:
:param remove_parentheses:
:param ignore_hyphen:
:param ignore_punc:
:param add_punc:
:param small_window:
:param no_stop_words:
:param ignore_righthand:
:param map_chars:
:return:
'''
pairs_left = self.bounded_schwartz_extract(sentence, shorts, remove_parentheses, ignore_hyphen=True,
ignore_punc=ignore_punc, add_punc=add_punc,
small_window=small_window, no_stop_words=no_stop_words,
ignore_righthand=ignore_righthand, map_chars=True, high_recall=True,
high_recall_left=True, tag='High Recall Schwartz')
pairs_right = self.bounded_schwartz_extract(sentence, shorts, remove_parentheses, ignore_hyphen=True,
ignore_punc=ignore_punc, add_punc=add_punc,
small_window=small_window, no_stop_words=no_stop_words,
ignore_righthand=ignore_righthand, map_chars=True, high_recall=True,
high_recall_left=False, tag='High Recall Schwartz')
for acr, lf in pairs_right.items():
if len(lf[0]) > 0 and (acr not in pairs_left or len(pairs_left[acr][0]) == 0):
pairs_left[acr] = lf
res = {}
for acr, lf in pairs_left.items():
if acr == ''.join([w[0] for w in lf[0].split() if w[0].isupper()]) or acr.lower() == ''.join(
w[0] for w in lf[0].split() if w not in string.punctuation and w not in stop_words).lower():
res[acr] = lf
return res
def character_match(self, acronym, long, long_index, left=False, output_string=False, is_candidate=True):
capitals = []
long_form = []
for c in acronym:
if c.isupper():
capitals.append(c)
# FIXED [issue: different modern GAN architectures : Deep Convolutional ( DC ) GAN , Spectral Normalization ( SN ) GAN , and Spectral Normalization GAN with Gradient Penalty ( SNGP ) .]
if not is_candidate:
long_capital_initials = []
for w in long:
if w[0].isupper():
long_capital_initials.append(w[0])
####
if left:
capitals = capitals[::-1]
long = long[::-1]
long_index = long_index[::-1]
for j, c in enumerate(capitals):
if j >= len(long):
long_form = []
break
else:
if long[j][0].lower() == c.lower():
long_form.append(long_index[j])
else:
long_form = []
break
# FIXED [issue: different modern GAN architectures : Deep Convolutional ( DC ) GAN , Spectral Normalization ( SN ) GAN , and Spectral Normalization GAN with Gradient Penalty ( SNGP ) .]
if not is_candidate:
if len(long_capital_initials) != len(long_form) and len(long_capital_initials) > 0:
long_form = []
####
long_form.sort()
if output_string:
if long_form:
return long[long_form[0]:long_form[-1] + 1]
else:
return ""
else:
return long_form
# FIXED [issue: annotation software application , Text Annotation Graphs , or TAG , that provides a rich set of]
def high_recall_character_match(self, sentence, shorts, all_acronyms, ignore_hyphen=False, map_chars=False,default_diction=False):
'''
This function finds the long form of the acronyms that are not surrounded by parentheses in the text using scritc rule of character matching (the initial of the sequence of the words in the candidate long form should form the acronym)
example: annotation software application , Text Annotation Graphs , or TAG , that provides a rich set of ...
:param sentence:
:param shorts:
:param all_acronyms:
:return:
'''
labels = ['O'] * len(sentence)
diction = {}
for i, t in enumerate(sentence):
if i in shorts:
labels[i] = 'B-short'
# FIXED [issue: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of ]
if ignore_hyphen:
t = t.replace('-', '')
capitals = []
for c in t:
if c.isupper():
capitals.append(c)
cand_long = sentence[max(i - len(capitals) - 10, 0):i]
long_form = ''
long_form_index = []
for j in range(max(len(cand_long) - len(capitals), 0)):
if ''.join(w[0] for w in cand_long[j:j + len(capitals)]) == t:
long_form = ' '.join(cand_long[j:j + len(capitals)])
long_form_index = list(range(max(max(i - len(capitals) - 10, 0) + j, 0),
max(max(i - len(capitals) - 10, 0) + j, 0) + len(capitals)))
break
if not long_form:
cand_long = sentence[i + 1:len(capitals) + i + 10]
for j in range(max(len(cand_long) - len(capitals), 0)):
if ''.join(w[0] for w in cand_long[j:j + len(capitals)]) == t:
long_form = ' '.join(cand_long[j:j + len(capitals)])
long_form_index = list(range(i + 1 + j, i + j + len(capitals) + 1))
break
long_form = long_form.split()
if long_form:
if long_form[0] in stop_words or long_form[-1] in stop_words:
long_form = []
if any(lf in string.punctuation for lf in long_form):
long_form = []
if __name__ != "__main__":
NPs = [np.text for np in nlp(' '.join(sentence)).noun_chunks]
long_form_str = ' '.join(long_form)
if all(long_form_str not in np for np in NPs):
long_form = []
if long_form:
for j in long_form_index:
labels[j] = 'I-long'
labels[long_form_index[0]] = 'B-long'
if default_diction:
diction[(long_form_index[0], long_form_index[-1])] = (i, i)
return self.create_diction(sentence, labels, all_acronyms=all_acronyms, tag='high recall character match',
map_chars=map_chars,diction=diction)
def character_match_extract(self, sentence, shorts, all_acronyms, check_all_capitals=False, ignore_hyphen=False,
ignore_punc=False, map_chars=False,default_diction=False):
labels = ['O'] * len(sentence)
diction = {}
for i, t in enumerate(sentence):
if i in shorts:
labels[i] = 'B-short'
# FIXED [issue: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of ]
if ignore_hyphen:
t = t.replace('-', '')
# FIXED [issue: acronyms with lowercase letters, example: of an enhanced Node B ( eNB ) ]
if check_all_capitals:
if len(t) != len([c for c in t if c.isupper()]):
continue
# FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
cand_long, cand_long_index, left = self.extract_cand_long(sentence, t, i, ignore_punc=ignore_punc)
long_form = []
if cand_long:
long_form = self.character_match(t, cand_long, cand_long_index, left, is_candidate=True)
if long_form:
labels[long_form[0]] = 'B-long'
for l in long_form[1:]:
labels[l] = 'I-long'
if default_diction:
diction[(long_form[0], long_form[-1])] = (i, i)
return self.create_diction(sentence, labels, all_acronyms=all_acronyms, tag='character match',
map_chars=map_chars, diction=diction)
# FIXED [issue: roman numbers]
def filterout_roman_numbers(self, diction):
'''
This function removes roman numbers from the list of extracted acronyms. It removes only numbers from 1 to 20.
:param diction:
:return:
'''
acronyms = set(diction.keys())
for acr in acronyms:
# instead of all roman acronyms we remove only 1 to 20:
# if bool(re.search(r"^M{0,3}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$", acr)):
if acr in ['I', 'II', 'III', 'IV', 'V', 'VI', 'VII', 'VIII', 'IX', 'X', 'XI', 'XII', 'XIII', 'XIV', 'XV',
'XVI', 'XVII', 'XVIII', 'XIX', 'XX']:
del diction[acr]
return diction
# FIXED [issue: 'In International Semantic Web Conference , ( ISWC ) ,']
def remove_punctuations(self, diction):
'''
Remove head+tailing punctuations
:param diction:
:return:
'''
for acr, info in diction.items():
if len(info[0]) > 0:
if info[0][0] in string.punctuation:
info[0] = info[0][2:]
info[2][0] = info[2][0] + 1
info[3] = 'remove punctuation'
if len(info[0]) > 0:
if info[0][-1] in string.punctuation:
info[0] = info[0][:-2]
info[2][1] = info[2][1] - 1
info[3] = 'remove punctuation'
return diction
# FIXED [issue: and Cantab Capital Institute for Mathematics of Information ( CCIMI )]
def initial_capitals_extract(self, sentence, shorts, all_acronyms, ignore_hyphen=False, map_chars=False,default_diction=False):
'''
This function captures long form which their initials is capital and could form the acronym in the format "long form (acronym)" or "(acronym) long form"
example:
:param sentence:
:param shorts:
:param all_acronyms:
:return:
'''
labels = ['O'] * len(sentence)
diction = {}
for i, t in enumerate(sentence):
if i in shorts:
labels[i] = 'B-short'
# FIXED [issue: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of ]
if ignore_hyphen:
t = t.replace('-', '')
capitals = []
for c in t:
if c.isupper():
capitals.append(c)
cand_long, cand_long_index, left = self.extract_cand_long(sentence, t, i)
capital_initials = []
capital_initials_index = []
for j, w in enumerate(cand_long):
lll = labels[i + j - len(cand_long) - 1]
if w[0].isupper() and labels[i + j - len(cand_long) - 1] == 'O':
capital_initials.append(w[0])
capital_initials_index.append(j)
if ''.join(capital_initials) == t:
long_form = cand_long[capital_initials_index[0]:capital_initials_index[-1] + 1]
long_form_index = cand_long_index[capital_initials_index[0]:capital_initials_index[-1] + 1]
for lfi in long_form_index:
labels[lfi] = 'I-long'
labels[long_form_index[0]] = 'B-long'
if default_diction:
diction[(long_form_index[0], long_form_index[-1])] = (i, i)
return self.create_diction(sentence, labels, all_acronyms=all_acronyms, tag='Capital Initials',
map_chars=map_chars,diction=diction)
# FIXED [issue: for C - GAN indicates ]
def hyphen_in_acronym(self, sentence, shorts):
'''
This function merge two acronyms if there is a hyphen between them
example: for C - GAN indicates
:param sentence:
:param shorts:
:return:
'''
new_shorts = []
for short in shorts:
i = short + 1
next_hyphen = False
while i < len(sentence) and sentence[i] == '-':
next_hyphen = True
i += 1
j = short - 1
before_hyphen = False
while j > 0 and sentence[j] == '-':
before_hyphen = True
j -= 1
# FIXED [check length of the new acronym. issue: SPG - GCN)In Table]
# if i < len(sentence) and sentence[i].isupper() and len(sentence[i]) <= 2:
if i < len(sentence) and sentence[i].isupper() and next_hyphen:
for ind in range(short + 1, i + 1):
new_shorts += [ind]
# FIXED [check length of the new acronym. issue: SPG - GCN)In Table]
# if j > -1 and sentence[j].isupper() and len(sentence[j]) <= 2:
if j > -1 and sentence[j].isupper() and before_hyphen:
for ind in range(j, short):
new_shorts += [ind]
shorts.extend(new_shorts)
return shorts
# FIXED [issue: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of ]
def merge_hyphened_acronyms(self, sentence, labels=[]):
'''
This function merge hyphened acronyms
example: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of
:param sentence:
:return:
'''
new_sentence = []
new_labels = []
merge = False
shorts = self.short_extract(sentence, 0.6, True)
shorts += self.hyphen_in_acronym(sentence, shorts)
for i, t in enumerate(sentence):
if i in shorts and i - 1 in shorts and i + 1 in shorts and t == '-':
merge = True
if len(new_sentence) > 0:
new_sentence[-1] += '-'
else:
new_sentence += ['-']
continue
if merge:
if len(new_sentence) > 0:
new_sentence[-1] += t
else:
new_sentence += [t]
else:
new_sentence.append(t)
if labels:
new_labels.append(labels[i])
merge = False
return new_sentence, new_labels
# FIXED [issue: we use encoder RNN ( ER )]
def add_embedded_acronym(self, diction, shorts, sentence):
'''
This function will add the embeded acronyms into the dictionary
example: we use encoder RNN ( ER )
:param diction:
:param shorts:
:return:
'''
short_captured = []
long_captured = []
for acr, info in diction.items():
short_captured.append(info[1][0])
if info[2]:
long_captured.extend(list(range(info[2][0], info[2][1])))
for short in shorts:
if short not in short_captured and short in long_captured and sentence[short] not in diction:
diction[sentence[short]] = ['', (short, short), [], 'embedded acronym']
return diction
# FIXED [issue: acronym stands for template]
def extract_templates(self, sentence, shorts, map_chars=False):
'''
Extract acronym and long forms based on templates
example: PM stands for Product Manager
:param sentence:
:param shorts:
:return:
'''
labels = ['O'] * len(sentence)
for i, t in enumerate(sentence):
if i in shorts:
labels[i] = 'B-short'
capitals = []
for c in t:
if c.isupper():
capitals.append(c)
if i < len(sentence) - len(capitals) - 2:
if sentence[i + 1] == 'stands' and sentence[i + 2] == 'for':
if ''.join(w[0] for w in sentence[i + 3:i + 3 + len(capitals)]) == ''.join(capitals):
labels[i + 3:i + 3 + len(capitals)] = ['I-long'] * len(capitals)
labels[i + 3] = 'B-long'
return self.create_diction(sentence, labels, all_acronyms=False, tag='Template', map_chars=map_chars)
# FIXED [issue: preserve number of meanins extracted from other method]
def update_pair(self, old_pair, new_pair):
for acr, info in new_pair.items():
if acr not in old_pair:
old_pair[acr] = info
else:
info[4] = max(info[4],old_pair[acr][4])
old_pair[acr] = info
return old_pair
def extract(self, sentence, active_rules):
# FIXED [issue: of an enhanced Node B ( eNB ) ]
shorts = self.short_extract(sentence, 0.6, active_rules['starting_lower_case'],
ignore_dot=active_rules['ignore_dot'])
# FIXED [issue: acronyms like StESs]
if active_rules['low_short_threshold']:
shorts += self.short_extract(sentence, 0.50, active_rules['starting_lower_case'],
ignore_dot=active_rules['ignore_dot'])
####
# FIXED [issue: for C - GAN indicates ]
if active_rules['hyphen_in_acronym']:
shorts += self.hyphen_in_acronym(sentence, shorts)
####
pairs = {}
if active_rules['schwartz']:
# FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
pairs = self.schwartz_extract(sentence, shorts, active_rules['no_parentheses'],
ignore_punc=active_rules['ignore_punc_in_parentheses'],
add_punc=active_rules['extend_punc'],
small_window=active_rules['small_window'],
no_stop_words=active_rules['no_beginning_stop_word'],
ignore_righthand=active_rules['ignore_right_hand'],
map_chars=active_rules['map_chars'],
default_diction=active_rules['default_diction'])
# FIXED [issue: 'User - guided Social Media Crawling method ( USMC ) that']
if active_rules['bounded_schwartz']:
# FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
bounded_pairs = self.bounded_schwartz_extract(sentence, shorts, active_rules['no_parentheses'],
ignore_punc=active_rules['ignore_punc_in_parentheses'],
add_punc=active_rules['extend_punc'],
small_window=active_rules['small_window'],
no_stop_words=active_rules['no_beginning_stop_word'],
ignore_righthand=active_rules['ignore_right_hand'],
map_chars=active_rules['map_chars'],
default_diction=active_rules['default_diction'])
# pairs.update(bounded_pairs)
pairs = self.update_pair(pairs, bounded_pairs)
# FIXED [issue: The Stopping Trained in America PhDs from Leaving the Economy Act ( or STAPLE Act ) has bee introduced]
if active_rules['high_recall_schwartz']:
hr_paris = self.high_recall_schwartz(sentence, shorts, active_rules['no_parentheses'],
ignore_punc=active_rules['ignore_punc_in_parentheses'],
add_punc=active_rules['extend_punc'],
small_window=active_rules['small_window'],
no_stop_words=active_rules['no_beginning_stop_word'],
ignore_righthand=active_rules['ignore_right_hand'],
map_chars=active_rules['map_chars'],
default_diction=active_rules['default_diction'])
# pairs.update(hr_paris)
pairs = self.update_pair(pairs,hr_paris)
if active_rules['character']:
# FIXED [issue: acronyms with lowercase letters, example: of an enhanced Node B ( eNB ) ]
# FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
character_pairs = self.character_match_extract(sentence, shorts, not active_rules['schwartz'],
check_all_capitals=active_rules['check_all_capitals'],
ignore_punc=active_rules['ignore_punc_in_parentheses'],
map_chars=active_rules['map_chars'],
default_diction=active_rules['default_diction'])
# pairs.update(character_pairs)
pairs = self.update_pair(pairs, character_pairs)
# FIXED [issue: annotation software application , Text Annotation Graphs , or TAG , that provides a rich set of]
if active_rules['high_recall_character_match']:
character_pairs = self.high_recall_character_match(sentence, shorts, not active_rules['schwartz'],
map_chars=active_rules['map_chars'],default_diction=active_rules['default_diction'])
acronyms = character_pairs.keys()
for acr in acronyms:
if acr not in pairs or len(pairs[acr][0]) == 0:
pairs[acr] = character_pairs[acr]
# FIXED [issue: and Cantab Capital Institute for Mathematics of Information ( CCIMI )]
if active_rules['initial_capitals']:
character_pairs = self.initial_capitals_extract(sentence, shorts, not active_rules['schwartz'],
map_chars=active_rules['map_chars'],default_diction=active_rules['default_diction'])
# pairs.update(character_pairs)
pairs = self.update_pair(pairs,character_pairs)
# FIXED [issue: acronym stands for long form]
if active_rules['template']:
template_pairs = self.extract_templates(sentence, shorts, map_chars=active_rules['map_chars'])
# pairs.update(template_pairs)
pairs = self.update_pair(pairs,template_pairs)
# FIXED [issue: we use encoder RNN ( ER )]
if active_rules['capture_embedded_acronym']:
pairs = self.add_embedded_acronym(pairs, shorts, sentence)
# FIXED [issue: roman numbers]
if active_rules['roman']:
pairs = self.filterout_roman_numbers(pairs)
# FIXED [issue: 'In International Semantic Web Conference , ( ISWC ) ,']
if active_rules['remove_punctuation']:
pairs = self.remove_punctuations(pairs)
return pairs
failures = []
sucess = []
for i in range(len(gold_label)):
gold_diction = self.create_diction(dataset[i]['token'], gold_label[i], tag='gold')
pred_diction = pred_dictions[i]
if gold_diction.keys() != pred_diction.keys() or set(v[0] for v in gold_diction.values()) != set(
v[0] for v in pred_diction.values()):
failures.append([gold_diction, pred_diction, dataset[i]['token'], dataset[i]['id']])
else:
sucess.append([gold_diction, pred_diction, dataset[i]['token'], dataset[i]['id']])
failure_ratio = 'Failures: {:.2%}'.format(len(failures) / len(dataset)) + '\n'
print(failure_ratio)
results += failure_ratio
return failures, sucess, results |