File size: 6,980 Bytes
74aacd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gc

import PIL.Image
import cv2
import numpy as np
import torch
from diffusers import (
    ControlNetModel,
)
from loguru import logger

from lama_cleaner.model.base import DiffusionInpaintModel
from lama_cleaner.model.utils import torch_gc, get_scheduler
from lama_cleaner.schema import Config


class CPUTextEncoderWrapper:
    def __init__(self, text_encoder, torch_dtype):
        self.config = text_encoder.config
        self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True)
        self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True)
        self.torch_dtype = torch_dtype
        del text_encoder
        torch_gc()

    def __call__(self, x, **kwargs):
        input_device = x.device
        return [
            self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0]
            .to(input_device)
            .to(self.torch_dtype)
        ]

    @property
    def dtype(self):
        return self.torch_dtype


NAMES_MAP = {
    "sd1.5": "runwayml/stable-diffusion-inpainting",
    "anything4": "Sanster/anything-4.0-inpainting",
    "realisticVision1.4": "Sanster/Realistic_Vision_V1.4-inpainting",
}


def load_from_local_model(local_model_path, torch_dtype, controlnet):
    from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
        load_pipeline_from_original_stable_diffusion_ckpt,
    )
    from .pipeline import StableDiffusionControlNetInpaintPipeline

    logger.info(f"Converting {local_model_path} to diffusers controlnet pipeline")

    pipe = load_pipeline_from_original_stable_diffusion_ckpt(
        local_model_path,
        num_in_channels=9,
        from_safetensors=local_model_path.endswith("safetensors"),
        device="cpu",
    )

    inpaint_pipe = StableDiffusionControlNetInpaintPipeline(
        vae=pipe.vae,
        text_encoder=pipe.text_encoder,
        tokenizer=pipe.tokenizer,
        unet=pipe.unet,
        controlnet=controlnet,
        scheduler=pipe.scheduler,
        safety_checker=None,
        feature_extractor=None,
        requires_safety_checker=False,
    )

    del pipe
    gc.collect()
    return inpaint_pipe.to(torch_dtype)


class ControlNet(DiffusionInpaintModel):
    name = "controlnet"
    pad_mod = 8
    min_size = 512

    def init_model(self, device: torch.device, **kwargs):
        from .pipeline import StableDiffusionControlNetInpaintPipeline

        model_id = NAMES_MAP[kwargs["name"]]
        fp16 = not kwargs.get("no_half", False)

        model_kwargs = {
            "local_files_only": kwargs.get("local_files_only", kwargs["sd_run_local"])
        }
        if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
            logger.info("Disable Stable Diffusion Model NSFW checker")
            model_kwargs.update(
                dict(
                    safety_checker=None,
                    feature_extractor=None,
                    requires_safety_checker=False,
                )
            )

        use_gpu = device == torch.device("cuda") and torch.cuda.is_available()
        torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32

        controlnet = ControlNetModel.from_pretrained(
            f"lllyasviel/sd-controlnet-canny", torch_dtype=torch_dtype
        )
        if kwargs.get("sd_local_model_path", None):
            self.model = load_from_local_model(
                kwargs["sd_local_model_path"],
                torch_dtype=torch_dtype,
                controlnet=controlnet,
            )
        else:
            self.model = StableDiffusionControlNetInpaintPipeline.from_pretrained(
                model_id,
                controlnet=controlnet,
                revision="fp16" if use_gpu and fp16 else "main",
                torch_dtype=torch_dtype,
                **model_kwargs,
            )

        # https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
        self.model.enable_attention_slicing()
        # https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention
        if kwargs.get("enable_xformers", False):
            self.model.enable_xformers_memory_efficient_attention()

        if kwargs.get("cpu_offload", False) and use_gpu:
            logger.info("Enable sequential cpu offload")
            self.model.enable_sequential_cpu_offload(gpu_id=0)
        else:
            self.model = self.model.to(device)
            if kwargs["sd_cpu_textencoder"]:
                logger.info("Run Stable Diffusion TextEncoder on CPU")
                self.model.text_encoder = CPUTextEncoderWrapper(
                    self.model.text_encoder, torch_dtype
                )

        self.callback = kwargs.pop("callback", None)

    def forward(self, image, mask, config: Config):
        """Input image and output image have same size
        image: [H, W, C] RGB
        mask: [H, W, 1] 255 means area to repaint
        return: BGR IMAGE
        """

        scheduler_config = self.model.scheduler.config
        scheduler = get_scheduler(config.sd_sampler, scheduler_config)
        self.model.scheduler = scheduler

        if config.sd_mask_blur != 0:
            k = 2 * config.sd_mask_blur + 1
            mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]

        img_h, img_w = image.shape[:2]

        canny_image = cv2.Canny(image, 100, 200)
        canny_image = canny_image[:, :, None]
        canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
        canny_image = PIL.Image.fromarray(canny_image)
        mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
        image = PIL.Image.fromarray(image)

        output = self.model(
            image=image,
            control_image=canny_image,
            prompt=config.prompt,
            negative_prompt=config.negative_prompt,
            mask_image=mask_image,
            num_inference_steps=config.sd_steps,
            guidance_scale=config.sd_guidance_scale,
            output_type="np.array",
            callback=self.callback,
            height=img_h,
            width=img_w,
            generator=torch.manual_seed(config.sd_seed),
            controlnet_conditioning_scale=config.controlnet_conditioning_scale,
        ).images[0]

        output = (output * 255).round().astype("uint8")
        output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
        return output

    def forward_post_process(self, result, image, mask, config):
        if config.sd_match_histograms:
            result = self._match_histograms(result, image[:, :, ::-1], mask)

        if config.sd_mask_blur != 0:
            k = 2 * config.sd_mask_blur + 1
            mask = cv2.GaussianBlur(mask, (k, k), 0)
        return result, image, mask

    @staticmethod
    def is_downloaded() -> bool:
        # model will be downloaded when app start, and can't switch in frontend settings
        return True