Spaces:
Runtime error
Runtime error
Linseypass
commited on
Commit
•
e77c4bf
1
Parent(s):
84ea4c2
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from nltk.tokenize import sent_tokenize
|
3 |
import torch
|
4 |
import ujson as json
|
@@ -26,143 +27,112 @@ stop_token_ids = [0]
|
|
26 |
print('Guanaco model loaded into memory.')
|
27 |
|
28 |
|
29 |
-
def
|
30 |
-
|
31 |
-
if userGivenKeyphrases == "":
|
32 |
-
'''
|
33 |
-
Process Abstract (eliminate word abstract at front and put into sentences)
|
34 |
-
'''
|
35 |
-
# eliminate word lowercase "abstract" or "abstract." at beginning of abstract text
|
36 |
-
if abstract.lower()[0:9] == "abstract.":
|
37 |
-
abstract = abstract[9:]
|
38 |
-
elif abstract.lower()[0:8] == "abstract":
|
39 |
-
abstract = abstract[8:]
|
40 |
-
abstractSentences = sent_tokenize(abstract)
|
41 |
-
tooShort = True # if the document only has one or fewer abstract sentences, then the document is too short for the keyphrase extraction/elaboration to give a meaningful output.
|
42 |
-
numAbstractSentences = len(abstractSentences)
|
43 |
-
if numAbstractSentences > 1:
|
44 |
-
tooShort = False
|
45 |
-
numAbstractSentencesKeyphrase = min(numAbstractSentences, numAbstractSentencesKeyphrase)
|
46 |
-
doc = f"{title}. {' '.join(abstractSentences[:numAbstractSentencesKeyphrase])}"
|
47 |
-
kw_model = KeyBERT(model="all-MiniLM-L6-v2")
|
48 |
-
vectorizer = KeyphraseCountVectorizer()
|
49 |
-
keywordsOut = kw_model.extract_keywords(doc, stop_words="english", top_n = numKeywordsToExtract, vectorizer=vectorizer, use_mmr=True)
|
50 |
-
keyBERTKeywords = [x[0] for x in keywordsOut]
|
51 |
-
for entry in keyBERTKeywords:
|
52 |
-
print(entry)
|
53 |
-
|
54 |
-
keywordString = ""
|
55 |
-
if userGivenKeyphrases != "":
|
56 |
-
keywordString = userGivenKeyphrases
|
57 |
-
elif not tooShort:
|
58 |
-
separator = ', '
|
59 |
-
keywordString = separator.join(keyBERTKeywords)
|
60 |
-
prompt = "What is the purpose of studying " + keywordString + "? Comment on areas of application."
|
61 |
-
if keywordString != "":
|
62 |
-
formatted_prompt = (
|
63 |
-
f"A chat between a curious human and an artificial intelligence assistant."
|
64 |
-
f"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
|
65 |
-
f"### Human: {prompt} \n"
|
66 |
-
f"### Assistant:"
|
67 |
-
)
|
68 |
-
inputs = tok(formatted_prompt, return_tensors="pt").to(deviceElaboration)
|
69 |
-
outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=maxTokensElaboration)
|
70 |
-
output = tok.decode(outputs[0], skip_special_tokens=True)
|
71 |
-
index_response = output.find("### Assistant: ") + 15
|
72 |
-
end_response = output.rfind('.') + 1
|
73 |
-
response = output[index_response:end_response]
|
74 |
-
return keywordString, response
|
75 |
-
|
76 |
-
def plainLanguageSummary(title, abstract, maxTokensSummary, numAbstractSentencesSummary):
|
77 |
-
'''
|
78 |
-
Process Abstract (eliminate word abstract at front and put into sentences)
|
79 |
'''
|
|
|
|
|
|
|
|
|
80 |
# eliminate word lowercase "abstract" or "abstract." at beginning of abstract text
|
81 |
-
if
|
82 |
-
|
83 |
-
elif
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
'''
|
87 |
This is for summarization
|
88 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
prompt = """
|
90 |
Can you explain the main idea of what is being studied in the following paragraph for someone who is not familiar with the topic. Comment on areas of application.:
|
91 |
"""
|
92 |
-
text = ""
|
93 |
-
if text == "":
|
94 |
-
numAbstractSentences = len(abstractSentences)
|
95 |
-
numAbstractSentencesSummary = min(numAbstractSentences, numAbstractSentencesSummary)
|
96 |
-
text = f"{title}. {' '.join(abstractSentences[:numAbstractSentencesSummary])}"
|
97 |
-
|
98 |
formatted_prompt = (
|
99 |
f"A chat between a curious human and an artificial intelligence assistant."
|
100 |
f"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
|
101 |
-
f"### Human: {prompt +
|
102 |
f"### Assistant:"
|
103 |
)
|
104 |
-
inputs = tok(formatted_prompt, return_tensors="pt")
|
105 |
-
outputs =
|
106 |
output = tok.decode(outputs[0], skip_special_tokens=True)
|
107 |
index_response = output.find("### Assistant: ") + 15
|
108 |
-
if (output[index_response:index_response + 10] == "Certainly!"
|
109 |
index_response += 10
|
110 |
end_response = output.rfind('.') + 1
|
111 |
response = output[index_response:end_response]
|
112 |
-
|
113 |
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
label="Number of Abstract Sentences to use for Keyphrase Extraction",
|
144 |
-
value=2,
|
145 |
-
minimum=0,
|
146 |
-
maximum=20,
|
147 |
-
step=1,
|
148 |
-
interactive=True,
|
149 |
-
info="Default: use first two sentences of abstract."
|
150 |
-
)
|
151 |
-
numAbstractSentencesSummary = gr.Slider(
|
152 |
-
label="Number of Abstract Sentences to use for Plain Language Summary",
|
153 |
-
value=2,
|
154 |
-
minimum=0,
|
155 |
-
maximum=20,
|
156 |
-
step=1,
|
157 |
-
interactive=True,
|
158 |
-
info="Default: use first two sentences of abstract."
|
159 |
-
)
|
160 |
-
with gr.Column():
|
161 |
-
outputKeyphrase = [gr.Textbox(label="Keyphrases"), gr.Textbox(label="Keyphrase Elaboration")]
|
162 |
-
outputSummary = gr.Textbox(label="Plain Language Summary")
|
163 |
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
|
|
|
|
|
|
|
|
|
|
167 |
demo.launch()
|
168 |
|
|
|
1 |
import gradio as gr
|
2 |
+
|
3 |
from nltk.tokenize import sent_tokenize
|
4 |
import torch
|
5 |
import ujson as json
|
|
|
27 |
print('Guanaco model loaded into memory.')
|
28 |
|
29 |
|
30 |
+
def generate(title, abstract):
|
31 |
+
print("Started running.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
'''
|
33 |
+
Take gradio input and output data to sample-data.jsonl in readable form for classifier.py to run.
|
34 |
+
'''
|
35 |
+
newline = {}
|
36 |
+
text = abstract
|
37 |
# eliminate word lowercase "abstract" or "abstract." at beginning of abstract text
|
38 |
+
if text.lower()[0:9] == "abstract.":
|
39 |
+
text = text[9:]
|
40 |
+
elif text.lower()[0:8] == "abstract":
|
41 |
+
text = text[8:]
|
42 |
+
sentences = sent_tokenize(text)
|
43 |
+
newline["target"] = sentences
|
44 |
+
newline["title"] = title
|
45 |
+
print("Tokenized abstract to sentences.")
|
46 |
+
'''
|
47 |
+
Main part
|
48 |
+
'''
|
49 |
'''
|
50 |
This is for summarization
|
51 |
'''
|
52 |
+
tooShortForKeyword = False
|
53 |
+
obj = newline
|
54 |
+
doc = ""
|
55 |
+
if len(obj["target"]) > 1:
|
56 |
+
doc += obj["title"] + ". " + obj["target"][0] + " " + obj["target"][1]
|
57 |
+
elif len(obj["target"]) == 1:
|
58 |
+
tooShortForKeyword = True
|
59 |
+
doc += obj["title"] + ". " + obj["target"][0]
|
60 |
+
else:
|
61 |
+
tooShortForKeyword = True
|
62 |
+
doc += obj["title"]
|
63 |
+
text = doc
|
64 |
prompt = """
|
65 |
Can you explain the main idea of what is being studied in the following paragraph for someone who is not familiar with the topic. Comment on areas of application.:
|
66 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
formatted_prompt = (
|
68 |
f"A chat between a curious human and an artificial intelligence assistant."
|
69 |
f"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
|
70 |
+
f"### Human: {prompt + doc} \n"
|
71 |
f"### Assistant:"
|
72 |
)
|
73 |
+
inputs = tok(formatted_prompt, return_tensors="pt")#.to("cuda:1")
|
74 |
+
outputs = m.generate(inputs=inputs.input_ids, max_new_tokens=300)
|
75 |
output = tok.decode(outputs[0], skip_special_tokens=True)
|
76 |
index_response = output.find("### Assistant: ") + 15
|
77 |
+
if (output[index_response:index_response + 10] == "Certainly!"):
|
78 |
index_response += 10
|
79 |
end_response = output.rfind('.') + 1
|
80 |
response = output[index_response:end_response]
|
81 |
+
print('Plain Language Summary Created.')
|
82 |
|
83 |
+
'''
|
84 |
+
Keyphrase extraction.
|
85 |
+
'''
|
86 |
+
# the document is the title and first two sentences of the abstract.
|
87 |
|
88 |
+
obj = newline
|
89 |
+
doc = ""
|
90 |
+
if len(obj["target"]) > 1:
|
91 |
+
doc += obj["title"] + ". " + obj["target"][0] + " " + obj["target"][1]
|
92 |
+
kw_model = KeyBERT(model="all-MiniLM-L6-v2")
|
93 |
+
vectorizer = KeyphraseCountVectorizer()
|
94 |
+
top_n = 2
|
95 |
+
keywords = kw_model.extract_keywords(doc, stop_words="english", top_n = top_n, vectorizer=vectorizer, use_mmr=True)
|
96 |
+
my_keywords = []
|
97 |
+
for i in range(top_n):
|
98 |
+
add = True
|
99 |
+
for j in range(top_n):
|
100 |
+
if i != j:
|
101 |
+
if keywords[i][0] in keywords[j][0]:
|
102 |
+
add = False
|
103 |
+
if add:
|
104 |
+
my_keywords.append(keywords[i][0])
|
105 |
+
for entry in my_keywords:
|
106 |
+
print(entry)
|
107 |
+
'''
|
108 |
+
This is for feeding the keyphrases into Guanaco.
|
109 |
+
'''
|
110 |
+
responseTwo = ""
|
111 |
+
keyword_string = ""
|
112 |
+
if not tooShortForKeyword:
|
113 |
+
separator = ', '
|
114 |
+
keyword_string = separator.join(my_keywords)
|
115 |
+
prompt = "What is the purpose of studying " + keyword_string + "? Comment on areas of application."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
formatted_prompt = (
|
118 |
+
f"A chat between a curious human and an artificial intelligence assistant."
|
119 |
+
f"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
|
120 |
+
f"### Human: {prompt} \n"
|
121 |
+
f"### Assistant:"
|
122 |
+
)
|
123 |
+
inputs = tok(formatted_prompt, return_tensors="pt")#.to("cuda:2")
|
124 |
+
outputs = m.generate(inputs=inputs.input_ids, max_new_tokens=300)
|
125 |
+
output = tok.decode(outputs[0], skip_special_tokens=True)
|
126 |
+
index_response = output.find("### Assistant: ") + 15
|
127 |
+
end_response = output.rfind('.') + 1
|
128 |
+
responseTwo = output[index_response:end_response]
|
129 |
+
print('Keyphrase elaboration ran.')
|
130 |
+
return keyword_string, responseTwo, response
|
131 |
|
132 |
+
demo = gr.Interface(
|
133 |
+
fn=generate,
|
134 |
+
inputs=[gr.Textbox(label="Title"), gr.Textbox(label="Abstract")],
|
135 |
+
outputs=[gr.Textbox(label="Keyphrases"), gr.Textbox(label="Keyphrase Elaboration"), gr.Textbox(label="Plain Language Summary")],
|
136 |
+
)
|
137 |
demo.launch()
|
138 |
|