import threading import numpy import opennsfw2 from PIL import Image from keras import Model from roop.typing import Frame PREDICTOR = None THREAD_LOCK = threading.Lock() MAX_PROBABILITY = 1 def get_predictor() -> Model: global PREDICTOR with THREAD_LOCK: if PREDICTOR is None: PREDICTOR = opennsfw2.make_open_nsfw_model() return PREDICTOR def clear_predictor() -> None: global PREDICTOR PREDICTOR = None def predict_frame(target_frame: Frame) -> bool: image = Image.fromarray(target_frame) image = opennsfw2.preprocess_image(image, opennsfw2.Preprocessing.YAHOO) views = numpy.expand_dims(image, axis=0) _, probability = get_predictor().predict(views)[0] return probability > MAX_PROBABILITY def predict_image(target_path: str) -> bool: return opennsfw2.predict_image(target_path) > MAX_PROBABILITY def predict_video(target_path: str) -> bool: _, probabilities = opennsfw2.predict_video_frames(video_path=target_path, frame_interval=100) return any(probability > MAX_PROBABILITY for probability in probabilities)